精英家教网 > 初中数学 > 题目详情
4.某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件,现在他采用提高售出单价,减少进货量的办法增加利润,已知这种商品的售出单价每提高1元,其销售量就要减少10件,若他将售出价定为每件x元,每天所赚利润为y元,请你写出y与x之间的函数表达式.

分析 每件利润为(x-8)元,销量为[100-10(x-10)],根据利润=单件利润×销量,可得售出价格x元与每天所得的毛利润y元之间的函数关系式.

解答 解:由题意得:每件利润为(x-8)元,销量为[100-10(x-10)]件,
所以y=(x-8)•[100-10(x-10)]=-10x2+280x-1600(10≤x≤18).

点评 此题主要考查了由实际问题抽象出二次函数解析式,关键是正确理解题意,表示出单件利润和销量.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.已知关于x的不等式组$\left\{\begin{array}{l}{2x+4>0}\\{3x-k<6}\end{array}\right.$.
(1)当k为何值时,该不等式组的解集为-2<x<1;
(2)若该不等式组只有3个正整数解,求一个满足条件的整数k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为10$\sqrt{3}$m(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知a,b是方程x2-x-1=0的两个实根,则2a5+5b3=21.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,AB是半圆O的直径,C是AB延长线上的一点,CD与半圆O相切于点D,连接AD,BD.
(1)求证:∠BAD=∠BDC;
(2)若∠BDC=28°,BD=2,求⊙O的半径.(精确到0.01)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.用加减法解下列方程.
(1)$\left\{\begin{array}{l}{3m+b=11}\\{-4m-b=11}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{0.6x-0.4y=1.1}\\{0.2x-0.4y=2.3}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{4f+g=15}\\{3g-4f=-3}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{\frac{1}{2}x+3y=-6}\\{\frac{1}{2}x+y=2}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.某种上衣打8折后的销售额为160元,则这种上衣的原价为200元.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.平面直角坐标系中,矩形OABC的顶点A,C分别在坐标轴上,顶点B在第一象限内,如图所示,且OA=a,OC=b.请根据下列操作,完成后面的问题.
【操作】
(1)连接AC,OB相交于点P1,则点P1的纵坐标为$\frac{1}{2}$a;
(2)过点P1作P1D⊥x轴于点D,连接BD交AC于点P2,则点P2的纵坐标为$\frac{1}{3}$a;
(3)过点P2作P2E⊥x轴于点E,连接BE交AC于点P3,则点P3的纵坐标为$\frac{1}{4}$a;

【问题】
(1)过点P3作P3F⊥x轴于点F,连接BF交AC于点P4,直接写出点P4的纵坐标;
(2)按照上述操作进行下去,猜想点Pn(n为正整数)的纵坐标是$\frac{a}{n+1}$.(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.某乡镇的4个村庄A、B、C、D恰好位于正方形的4个顶点上,为了解决农民出行难问题,镇政府决定修建连接各村庄的道路系统,使得每两个村庄都有直达的公路,设计人员给出了如下四个设计方案(实线表示连接的道路)

在上述四个方案中最短的道路系统是方案(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案