【题目】如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm,动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P, Q两点同时停止运动.以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为,正方形APDE和梯形BCFQ重合部分的面积为cm.
(1)当=_____s时,点P与点Q重合;
(2)当为多少时,点D在QF上;
(3)是否存在某一时刻,使得正方形APDE的面积被直线QF平分?若存在,求出的值;若不存在,请说明理由.
【答案】(1)1;(2);(3).
【解析】
(1)当点P与点Q重合时,此时AP=BQ=t,且AP+BQ=AB=2,由此列一元一次方程求出t的值;
(2)当点D在QF上时,如图1所示,此时AP=BQ=t.由相似三角形比例线段关系可得PQ=t,从而由关系式AP+PQ+BQ=AB=2,列一元一次方程求出t的值;
(3)当点P在Q,B两点之间运动(不包括Q,B两点),1<t≤时,如答图3所示,此时重合部分为梯形PDGQ.先计算梯形各边长,然后利用梯形面积公式求出S;由题意知,当1<t≤时,正方形APDE的面积被直线QF平分,列出方程,求出时间t.
解:(1)当点P与点Q重合时,AP=BQ=t,且AP+BQ=AB=2,
∴t+t=2,解得t=1s,
故答案:1.
(2)当点D在QF上时,如图1所示,此时AP=BQ=t.
∵QF∥BC,APDE为正方形,
∴△PQD∽△ABC,
∴DP:PQ=AC:AB=2,
则PQ=DP=AP=t.
由AP+PQ+BQ=AB=2,得t+t+t=2,
解得:t=.
故答案:.
(3)当P、Q重合时,由(1)知,此时t=1;当D点在BC上时,如图2所示,此时AP=BQ=t,BP=t,求得t=s,因此当P点在Q,B两点之间(不包括Q,B两点),且1<t≤时,如图3所示,此时重合部分为梯形PDGQ.此时AP=BQ=t,
∴AQ=2t,PQ=APAQ=2t2;
易知△ABC∽△AQF,
可得AF=2AQ,EF=2EG.
∴EF=AFAE=2(2t)t=43t,EG=EF=2t,
∴DG=DEEG=t(2t)=t2.
S=S梯形PDGQ=(PQ+DG)PD,
=[(2t2)+(t2)]t,
=;
由题意知,当1<t≤时,正方形APDE的面积被直线QF平分,
∴
解得:
故答案为:
科目:初中数学 来源: 题型:
【题目】(1)问题发现:如图①,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,以点D为顶点作正方形DFGE,使点A、C分别在DE和DF上,连接BE、AF.则线段BE和AF数量关系_____.
(2)类比探究:如图②,保持△ABC固定不动,将正方形DFGE绕点D旋转α(0°<α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.
(3)解决问题:若BC=DF=2,在(2)的旋转过程中,连接AE,请直接写出AE的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上。
(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+bx+c经过点B(0,3)和点A(3,0).
(1)求抛物线的函数表达式和直线的函数表达式;
(2)若点P是抛物线落在第一象限,连接PA,PB,求△PAB的面积S的最大值及此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的对称轴是直线x=1,且经过点(﹣1,0),则下列结论:①abc<0;②2a﹣b=0;③a<﹣ ;④若方程ax2+bx+c﹣2=0的两个根为x1和x2,则(x1+1)(x2﹣3)<0,正确的有( )个.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在△ABC中,AD是高,矩形PQMN的顶点P、N分别在AB、AC上,QM在边BC上.若BC=8cm,AD=6cm,
(1)PN=2PQ,求矩形PQMN的周长
(2)当PN为多少时矩形PQMN的面积最大,最大值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=20m,求障碍物B,C两点间的距离.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元.
(1)设销售单价为每千克a元,每天平均获利为y元,请解答下列问题:
①每天平均销售量可以表示为_____;
②每天平均销售额可以表示为_____;
③每天平均获利可以表示为y=______;
(2) 该经营户要想每天盈利200元,应将每千克小型西瓜的售价降多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com