【题目】请将使结论成立的条件或理由填写在横线上或括号内.
如图,中,是边的中点,过点作 , 交的延长线于点.
求证:是的中点.
证明: (已知)
是边的中点
在和中
是的中点.
【答案】∠B ∠BCE 两直线平行,内错角相等 BD CD 中点的性质 BD CD ∠ABD ∠ECD ASA AD ED 全等三角形对应边相等.
【解析】
由平行线的性质得出∠B=∠DCE,由中点的性质得出BD=CD,由ASA证明△ABD≌△ECD得出AD=ED,经得出结论.
证明:∵CE∥AB(已知)
∴∠B=∠DCE(两直线平行,内错角相等)
∵D是边BC的中点
∴BD=CD=(中点的性质)
在△ABD和△ECD中,
,
∴△ABD≌△ECD(ASA)
∴AD=ED(全等三角形的对应边相等)
∴D是AE的中点.
故答案为:∠B,∠DCE;两直线平行,内错角相等;BD,CD,中点的性质;∠B,∠DCE;BD=CD;ASA;全等三角形的对应边相等.
科目:初中数学 来源: 题型:
【题目】为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.
(1)求A,B两型桌椅的单价;
(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;
(3)求出总费用最少的购置方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是等腰直角三角形,AB=AC,AD是斜边的中线,E、F分别是AB、AC边上的点且DE⊥DF.
(1)求证:△AED≌△CFD;
(2)若BE=8,CF=6,求△DEF的面积;
(3)若AB=a,AE=x,请用含x,a的代数式表示△DEF的面积S.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)请你画出函数y=x2-4x+10的图象,由图象你能发现这个函数具有哪些性质?
(2)通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴、顶点坐标,这个函数有最大值还是最小值?这个值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为【 】
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知∠AOB和一条定长线段a,在∠AOB内找一点P,使点P到OA,OB的距离都等于a,作法如下:
①在∠AOB内作OB的垂线段NH,使NH=a,H为垂足;②过N作NM∥OB;③作∠AOB的平分线OP,与NM交于点P;④点P即为所求.其中③的依据是( )
A. 平行线之间的距离处处相等 B. 角的内部到角的两边的距离相等的点在角的平分线上
C. 角的平分线上的点到角的两边的距离相等 D. 线段垂直平分线上的点到线段两端点的距离相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,,cm,cm,若以C为圆心,以2cm为半径作圆,则点A在⊙C_____;点B在⊙C________;若以AB为直径作⊙O,则点C在⊙O_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com