精英家教网 > 初中数学 > 题目详情

【题目】在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA。若∠ACB=21°,则∠ECD的度数是( )

A.7°
B.21°
C.23°
D.24°

【答案】C
【解析】解:在矩形ABCD中,AB//CD,∠BCD=90°,
所以∠FEA=∠ECD,∠ACD=90°-∠ACB=69°,
因为∠ACF=∠AFC,∠FAE=∠FEA,∠AFC=∠FAE+∠FEA,
所以∠ACF=2∠FEA,
则∠ACD=∠ACF+∠ECD=3∠ECD=69°,
所以∠ECD=23°
故选C.
由矩形的性质不难得到∠FEA=∠ECD,∠ACD=90°-∠ACB=69°;根据三角形的外角性质及已知条件不难得出∠ACF=2∠FEA,即可得∠ACD被线CE三等分,则可解出∠ECD。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下面是某同学对多项式(x24x+2)(x24x+6+4进行因式分解的过程.

解:设x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列问题:

1)该同学第二步到第三步运用了因式分解的_______

A.提取公因式

B.平方差公式

C.两数和的完全平方公式

D.两数差的完全平方公式

2)该同学因式分解的结果是否彻底?________.(填彻底不彻底)若不彻底,请直接写出因式分解的最后结果_________

3)请你模仿以上方法尝试对多项式(x22x)(x22x+2+1进行因式分解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组: 并写出它的所有整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC与∠ACB的平分线相交于O.过点OEFBC分别交ABACEF.若∠BOC=130°,∠ABC:∠ACB=32,求∠AEF和∠EFC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对“隔离直线”给出如下定义:
点P(x,m)是图形G1上的任意一点,点Q(x,n)是图形G2上的任意一点,若存在直线l:kx+b(k≠0)满足m≤kx+b且n≥kx+b,则称直线l:y=kx+b(k≠0)是图形G1与G2的“隔离直线”.
如图1,直线l:y=﹣x﹣4是函数y= (x<0)的图象与正方形OABC的一条“隔离直线”.

(1)在直线y1=﹣2x,y2=3x+1,y3=﹣x+3中,是图1函数y= (x<0)的图象与正方形OABC的“隔离直线”的为
请你再写出一条符合题意的不同的“隔离直线”的表达式:
(2)如图2,第一象限的等腰直角三角形EDF的两腰分别与坐标轴平行,直角顶点D的坐标是( ,1),⊙O的半径为2.是否存在△EDF与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式;若不存在,请说明理由;

(3)正方形A1B1C1D1的一边在y轴上,其它三边都在y轴的右侧,点M(1,t)是此正方形的中心.若存在直线y=2x+b是函数y=x2﹣2x﹣3(0≤x≤4)的图象与正方形A1B1C1D1的“隔离直线”,请直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC和DEB中,已知AB=DE,还需添加两个条件才能使ABC≌△DEC,不能添加的一组条件是

A.BC=EC,B=E B.BC=EC,AC=DC

C.BC=DC,A=D D.B=E,A=D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在第1个△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1A2使得A1A2=A1C;在A2C上取一点D,延长A1A2A3,使得A2A3=A2D;…,按此做法进行下去,第n个三角形的以An为顶点的内角的度数为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.

(1)判断∠ADC是否是直角,并说明理由

(2)试求四边形草坪ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:( 1﹣(2﹣ 0﹣2sin60°+| ﹣2|

查看答案和解析>>

同步练习册答案