【题目】如图,一条抛物线与轴交于,两点,与轴交于点,为抛物线的顶点,点在轴上.
(1)求抛物线解析式;
(2)若,求点的坐标;
(3)过点作直线交抛物线于,是否存在以点,,,为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由;
(4)坐标平面内一点到点的距离为1个单位,求的最小值.
【答案】(1);(2)或(6,0);(3)Q(2,3)或或;(4).
【解析】
解:(1)把A,B,C三点坐标代入求出解析式即可;
(2)先求出直线DB的解析式,再分①当点P在点B左侧时,②当点P在点B右侧时,分别求出P点坐标即可;
(3)分①当四边形APQC为平行四边形时,②当四边形AQPC为平行四边形时两种情况求出Q点坐标;
(4)先证△MBE∽△OBM得到,则当点D、M、E在同一直线上时,最短,求出最小值即可.
解:(1)∵抛物线与x轴交于A(-1,0),B(3,0)两点,
∴设此抛物线的解析式为y=a(x+1)(x-3),
将点C(0,3)代入,得a=-1,
∴,
(2)∵,
∴顶点D(1,4),
设直线DB解析式为y=kx+b,
将D(1,4),B(3,0)代入得,,
解得:k=﹣2,b=6,
∴直线DB解析式为y=﹣2x+6,
①如图1﹣1,当点P在点B左侧时,
∵∠PCB=∠CBD,
∴CP∥BD,
设直线CP解析式为y=﹣2x+m,
将C(0,3)代入,得m=3,
∴直线CP解析式y=﹣2x+3,
当y=0时,,
∴,
②如图1﹣2,当点P在点B右侧时,
作点P关于直线BC的对称点N,延长CN交x轴于点P',此时∠P'CB=∠CBD,
∵C(0,3),B(3,0),
∴OC=OB,
∴△OBC为等腰直角三角形,
∴∠CPB=45°,
∴∠NBC=45°,
∴△PBN为等腰直角三角形,
∴,
∴,
将C(0,3),代入直线CN解析式y=nx+t,
得:,
解得,,t=3,
∴直线CN解析式为,
当y=0时,x=6,
∴P'(6,0);
综上所述,点P坐标为或(6,0);
(3)①如图2﹣1,当四边形APQC为平行四边形时,
∴CQ∥AP,CQ=AP,
∵yC=3,
∴yQ=3,
令﹣x2+2x+3=3,
解得:x1=0,x2=2,
∴Q(2,3),
②如图2﹣2,当四边形AQPC为平行四边形时,
AC∥PQ,AC=PQ,
∴yC﹣yA=yP﹣yQ=3,
∵yP=0,
∴yQ=﹣3,
令﹣x2+2x+3=﹣3,
解得,,,
∴,
综上所述,点Q的坐标为Q(2,3)或或;
(4)∵点M到点B的距离为1个单位,
∴点M在以点B为圆心,半径为1的圆上运动,如图3
在x轴上作点,连接BM、EM、DE,
∴,
∵BM=1,
∴,
∵∠MBE=∠OBM,
∴△MBE∽△OBM,
∴,
∴,
∴,
∴当点D、M、E在同一直线上时,最短,
∵D(1,4),
∴,
∴的最小值为.
科目:初中数学 来源: 题型:
【题目】为了参加西部博览会,资阳市计划印制一批宣传册.该宣传册每本共10页,由A、B两种彩页构成.已知A种彩页制版费300元/张,B种彩页制版费200元/张,共计2400元.(注:彩页制版费与印数无关)
(1)每本宣传册A、B两种彩页各有多少张?
(2)据了解,A种彩页印刷费2.5元/张,B种彩页印刷费1.5元/张,这批宣传册的制版费与印刷费的和不超过30900元.如果按到资阳展台处的参观者人手一册发放宣传册,预计最多能发给多少位参观者?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 经过点,与轴相交于,两点,
(1)抛物线的函数表达式;
(2)点在抛物线的对称轴上,且位于轴的上方,将沿沿直线翻折得到,若点恰好落在抛物线的对称轴上,求点和点的坐标;
(3)设是抛物线上位于对称轴右侧的一点,点在抛物线的对称轴上,当为等边三角形时,求直线的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一款“雷达式”懒人椅.当懒人椅完全展开时,其侧面示意图如图2所示,金属杆AB、CD在点O处连接,且分别与金属杆EF在点B,D处连接.金属杆CD的OD部分可以伸缩(即OD的长度可变).已知OA=50cm,OB=20cm,OC=30cm.DE=BF=5cm.当把懒人椅完全叠合时,金属杆AB,CD,EF重合在一条直线上(如图3所示),此时点E和点A重合.
(1)如图2,已知∠BOD=6∠ODB,∠OBF=140°.
①求∠AOC的度数.
②求点A,C之间的距离.
(2)如图3,当懒人椅完全叠合时,求CF与CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车分别从两地同时出发,沿同一公路相向而行,开往两地.已知甲车每小时比乙车每小时多走,且甲车行驶所用的时间与乙车行驶所用的时间相同.
(1)求甲、乙两车的速度各是多少?
(2)实际上,甲车出发后,在途中因车辆故障耽搁了20分钟,但仍比乙车提前1小时到达目的地.求两地间的路程是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,作出如图所示的统计图和统计表.请根据图表信息,解答下列问题:
(1)在表中:m= ,n= ;在图中补全频数分布直方图;
(2)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在 组;
(3)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?请用列表法或画树状图法说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y= -x2+bx+c与x轴负半轴交于A点,与x轴正半轴交于B点,与y轴正半轴交于C点,CO=BO,AB=14.
(1)求抛物线的解析式;
(2)如图2, 点M、N在第一象限内抛物线上,M在N点下方,连CM、CN,∠OCN+∠OCM=180°, 设M点横坐标为m,N点横坐标为n,求m与n的函数关系式(n是自变量);
(3)如图3, 在(2)条件下,连AN交CO于E,过M作MF⊥AB于F,连BM、EF,若∠AFE=2∠FMB=2β, 求N点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,点A、点B在⊙O上,∠AOB=90°,OA=6,点C在OA上,且OC=2AC,点D是OB的中点,点M是劣弧AB上的动点,则CM+2DM的最小值为_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com