精英家教网 > 初中数学 > 题目详情
12.如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.
(1)试猜想线段AE与BF的长短有何关系?说明理由;
(2)若△ABC的面积为3cm2,求四边形ABFE的面积;
(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由.

分析 (1)根据旋转的性质得CF=AC,BE=BC,则根据平行四边形的判定方法得到四边形ABFC为平行四边形,然后根据平行四边形的性质得AE=BF;
(2)根据平行四边形的性质,利用四边形ABFE的面积进行计算即可;
(3)当AC=BC时,四边形ABFE为矩形而AB=AC,则宽带判定△ABC为等边三角形,于是得到∠ACB=60°.

解答 解:(1)AE=BF.理由如下:
∵将△ABC绕点C顺时针旋转180°得到△FEC,
∴CF=AC,BE=BC,
∴四边形ABFC为平行四边形,
∴AE=BF;
(2)∵四边形ABFC为平行四边形,
∴四边形ABFE的面积=4S△ABC=4×3=12(cm2);
(3)当∠ACB=60°时,四边形ABFE为矩形.理由如下:
∵当AF=BE时,平行四边形ABFE为矩形,
∴AC=BC,
而AB=AC,
∴△ABC为等边三角形,
∴∠ACB=60°,
即当∠ACB为60度时,四边形ABFE为矩形.

点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和矩形的判定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.已知△ABC的三边长分别为a,b,c且a+b=4,ab=1,c=$\sqrt{14}$,则△ABC的形状为(  )
A.锐角三角形B.钝角三角形C.直角三角形D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图是长和宽分别相等的两个矩形.给定下列四个命题:①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图;④存在正方体,其正(主)视图、俯视图如图.其中真命题的个数是(  )
A.3B.2C.1D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知:在梯形ABCD中,AD∥BC,E、F分别是BD、AC中点,求证:EF∥BC,EF=$\frac{1}{2}$(BC-AD).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.利民水果超市销售一种时令水果,第一周的进价是每千克30元,销量是200千克;第二周的进价是每千克25元,销量是400千克.已知第二周的售价比第一周的售价每千克少10元,第二周比第一周多获利2000元.
求第二周该水果每千克的售价是多少元?
第三周该水果的进价是每千克20元.经市场调查发现,如果第三周的售价比第二周降低t%,则销量会比第二周增加 5t%.请写出第三周获利y(元)与t的函数关系式,并求出t为何值时,y最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,字每个小正方形的边长为1个长度单位的长方形网格中,有一个△ABC
(1)在网格中画出△ABC向下平移3个单位长度得到△A1B1C1
(2)在网格中画出△A1B1C1,向右平移4个单位长度得到△A2B2C2
(3)如果点A的坐标为(a,b),请写出△A2B2C2各顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.阅读:△ABC中,a,b,c分别是∠A,∠B,∠C的对边,△ABC的边角有如下性质:
①正弦定理:$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$
②余弦定理:a2=b2+c2-2bccosA,b2=a2+c2-2accosB,c2=a2+b2-2abcosC.
③S△ABC=$\frac{1}{2}$absin C=$\frac{1}{2}$bcsin A=$\frac{1}{2}$acsin B
请你根据上述结论求解下列问题:在锐角△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且2asin B=$\sqrt{3}$b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在正方形ABCD中,点E为直线BC上一点,连接AE,过点E作EF⊥AE交直线AB于点M,交直线CD于点F.
(1)当点E在线段BC上时,如图①,求证:BE=BM+CF;(提示:过点C作CN∥FM交直线AB的于点N)
(2)当点E在线段BC的延长线上时,如图②;当点E在线段CB的延长线上时,如图③;线段BE、BM、CF之间又有怎样的数量关系?请直接写出你的猜想,不需要证明;
(3)若S正方形ABCD=324,sin∠FEC=$\frac{4}{5}$,则MB=32,CF=8或56.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.一束光线经三块平面镜AB,CD,EF反射的路线如图所示,∠MEN=110°,∠1=60°.
(1)求∠3+∠4的度数;
(2)求∠6的度数.

查看答案和解析>>

同步练习册答案