【题目】为了美化环境,建设最美西安,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用为y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为100元/m2.
(1)求y与x之间的函数关系式;
(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少费用为多少元
【答案】(1)y=;(2)甲花卉种200m2,乙花卉种1000m2,才能使种植费用最少,最少费用为24000元.
【解析】
(1)y与x之间的函数关系是分段函数关系,当0<x≤200时,y与x是正比例函数,当x>200时,y与x是一次函数,可分别用待定系数法求出其函数关系式;
(2)根据题意,可以确定自变量的取值范围,在自变量的取值范围内,依据函数的增减性确定种植面积和最小值的问题.
(1)当0<x≤200时,y与x是正比例函数,由于过(200,24000),
∴k=120,
∴y与x之间的函数关系式为:y=120x (0<x≤200),
当x>200时,y与x是一次函数,由于过(200,24000),(300,32000),
设y=kx+b,代入得:,解得:k=80,b=8000,
∴y与x之间的函数关系式为:y=80x+8000(x≥200),
答:y与x之间的函数关系式为:y=;
(2)由题意得:,解得:200≤x≤800,
又∵y=80x+8000(x≥200),
∴y随x的增大而增大,
当x=200时,y最小=200×80+8000=24000元,此时,甲花卉种200m2,乙花卉种1000m2,
答:甲花卉种200m2,乙花卉种1000m2,才能使种植费用最少,最少费用为24000元.
科目:初中数学 来源: 题型:
【题目】图1、图2均为圆心角为90°的扇形、请按要求用无刻度的直尺完成下列作图.
(1)在图1中、点M是的中点、请作出线段AB的垂直平分线;
(2)在图2中、点M是的中点,点N又是的三等分点,请作出线段0B的垂直平分线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.
(1)求口袋中黄球的个数;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,
求两次摸 出都是红球的概率;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,OABC的对角线OB在y轴正半轴上,点A,C分别在函数y=(x>0),y=(x<0)的图象上,分别过点A,C作AD⊥x轴于点D,CE⊥x轴于点E,若|k1|:|k2|=9:4,则AD:CE的值为( )
A.2:3B.3:2C.4:9D.9:4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(﹣t,y1)和(t,y2)(其中t为常数且t>0),将x<﹣t的部分沿直线y=y1翻折,翻折后的图象记为G1;将x>t的部分沿直线y=y2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G.
例如:如图,当t=1时,原函数y=x,图象G所对应的函数关系式为y=.
(1)当t=时,原函数为y=x+1,图象G与坐标轴的交点坐标是 .
(2)当t=时,原函数为y=x2﹣2x
①图象G所对应的函数值y随x的增大而减小时,x的取值范围是 .
②图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由.
(3)对应函数y=x2﹣2nx+n2﹣3(n为常数).
①n=﹣1时,若图象G与直线y=2恰好有两个交点,求t的取值范围.
②当t=2时,若图象G在n2﹣2≤x≤n2﹣1上的函数值y随x的增大而减小,直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
(1)求这个二次函数的表达式;
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.
①求线段PM的最大值;
②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知钝角△ABC
(1)过点A作BC边的垂线,交CB的延长线于点D;(尺规作图,保留作图痕迹,不要求写作法)
(2)当BC=AB,∠ABC=120°时,求证:AB平分∠DAC。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com