精英家教网 > 初中数学 > 题目详情

【题目】根据道路管理规定,在贺州某段笔直公路上行驶的车辆,限速40千米/时,已知交警测速点M到该公路A点的距离为米,∠MAB=45°,∠MBA=30°(如图所示),现有一辆汽车由A往B方向匀速行驶,测得此车从A点行驶到B点所用的时间为3秒.

(1)求测速点M到该公路的距离;
(2)通过计算判断此车是否超速.(参考数据:≈1.41,≈1.73,≈2.24)

【答案】
(1)

【解答】解:过M作MN⊥AB,

在Rt△AMN中,AM=,∠MAN=45°,

∴sin∠MAN=,即

解得:MN=10,

则测速点M到该公路的距离为10米;


(2)

由1知:AN=MN=10米,

在Rt△MNB中,∠MBN=30°,

由tan∠MBN=,得:

解得:BN=(米),

∴AB=AN+NB=10+≈27.3(米),

∴汽车从A到B的平均速度为27.3÷3=9.1(米/秒),

∵9.1米/秒=32.76千米/时<40千米/时,

∴此车没有超速.


【解析】

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,扇形OAB的圆心角为124°,C是弧 上一点,则∠ACB=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,设AB=c,BC=a,AC=b,中线AE,BF相交于G,若AE⊥BF.

(1)①当∠ABF=60°,c=4时,求a与b的值;
②当∠ABF=30°,c=2 时,a= , b=
(2)由(1)获得启示,猜想a2 , b2 , c2三者之间满足数量关系式是;(直接写出结果)
(3)如图2,在平行四边形ABCD中,AB=4 ,BC=3 ,点E,F,G分别是AD,AB,CD的中点,CF与BG交于P点,若EF⊥FC.利用(2)中的结论,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=(x2﹣7x+6)的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.

(1)用配方法将抛物线的解析式化为顶点式:y=a(x﹣h)2+k(a≠0),并指出顶点M的坐标;
(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;
(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O是以AB为直径的△ABC的外接圆,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD,BD交AC于点F.

(1)求证:BD平分∠ABC;
(2)延长AC到点P,使PF=PB,求证:PB是⊙O的切线;
(3)如果AB=10,cos∠ABC=,求AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BC是⊙O的直径,AD是⊙O的切线,切点为D,AD与CB的延长线交于点A,∠C=30°,给出下面四个结论:
①AD=DC;②AB=BD;③AB=BC;④BD=CD, 其中正确的个数为(  )

A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,CO⊥AB于O,D在⊙O上,连接BD,CD,延长CD与AB的延长线交于E,F在BE上,且FD=FE.

(1)求证:FD是⊙O的切线;
(2)若AF=8,tan∠BDF=,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:
乙校成绩统计表

分数(分)

人数(人)

70

7

80

90

1

100

8


(1)在图①中,“80分”所在扇形的圆心角度数为
(2)请你将图②补充完整;
(3)求乙校成绩的平均分;
(4)经计算知S2=135,S2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=

查看答案和解析>>

同步练习册答案