精英家教网 > 初中数学 > 题目详情

【题目】已知:△AC 内接于⊙O,D 是弧BC上一点,OD⊥BC,垂足为 H.

(1)如图 1,当圆心 O AB 边上时,求证:AC=2OH;

(2)如图 2,当圆心 O 在△ABC 外部时,连接 AD、CD,AD BC 交于点 P.求证:∠ACD=∠APB.

【答案】(1)见解析;(2)见解析.

【解析】

(1)ODBC可知HBC的中点,根据中位线的性质即可证明.

(2)根据垂径定理可知=,得∠BAD=DAC,B=ADC,根据三角形的内角和即可证明.

(1)证明:∵ODBC,

BH=HC,

OA=OB,

AC=2OH.

(1)证明:∵ODBC,

=,

∴∠BAD=DAC,

∵∠B=ADC,APB+BAD+B=180°,DAC+ACD+ADC=180°,

∴∠APB=ACD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某中学准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为米的篱笆围成,若墙长为米,设这个苗圃垂直于墙的一边长为米.

若苗圃园的面积为平方米,求的值;

若平行于墙的一边长不小于米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值,如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,C=90°,AC=6,BC=8,把ABC绕AB边上的点D顺时针旋转,旋转角为α(0°<α<180°),得到Rt△A′DE,A′C′交AB于点E,若AD=BE,则AD的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的图象描述一辆汽车在直线行驶过程中,汽车离出发地的距离 s(千米)和行驶时间 t(小时)之间的函数关系.请根据图中提供的信息,完成下列问题:

1)汽车在 OA 段行驶的平均速度是_____km/h,在 BC 段行驶的平均速度是_____km/h,在 CD 段行驶的平均速度是_____km/h

2AB 段表示的含义是_____

3)汽车全程所走路程是_____km

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着市民环保意识的增强,烟花爆竹销售量逐年下降,菏泽市2014年销售烟花爆竹20万箱,到2016年烟花爆竹销售量为9.8万箱.求菏泽市2014年到 2016年烟花爆竹销售量的平均下降率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线与直线的图象如图所示,则下列说法:

①当0<x<2时, y1>y2y1x的增大而增大的取值范围是x<2;③使得y2大于4x值不存在;④若y1=2,则x=2﹣x=1.其中正确的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形AOBC的边OBOA分别在xy轴上,点C坐标为(88),将正方形AOBC绕点A逆时针旋转角度αα90°),得到正方形ADEFED交线段BC于点QED的延长线交线段OB于点P,连接APAQ

1)求证:ACQ≌△ADQ

2)求∠PAQ的度数,并判断线段OPPQCQ之间的数量关系,并说明理由;

3)连接BEECCDDB得到四边形BECD,在旋转过程中,四边形BECD能否是矩形?如果能,请求出点P的坐标,如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者.在消防车上点A处测得点B和点C的仰角分别是45°65°,点A距地面2.5米,点B距地面10.5.为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E

(Ⅰ)如图①,求∠CED的大小;

(Ⅱ)如图②,当DE=BE时,求∠C的大小.

查看答案和解析>>

同步练习册答案