【题目】如图,在四边形中,,,对角线,点在轴上,与轴平行,点在轴上.
(1)求的度数.
(2)点在对角线上,点在四边形内且在点的右边,连接,已知,,设.
①求的长(用含的代数式表示);
②若某一反比例函数图象同时经过点、,求的值.
【答案】(1)60°;(2)① ;②
【解析】
(1)连接AC,首先证明,则有,进而可得,再利用勾股定理即可求出BE,DE的长度,然后利用特殊角的三角函数值即可求出的度数,最后利用即可求解;
(2)连接AQ,取AD的中点F,连接QF,易证均为等边三角形,然后证明,则有,再证明C,Q,F三点共线,然后求出CF的长度,最后利用即可求解;
(3)先利用平行线分线段成比例求出Q的坐标,然后求出点A的坐标,进而求出反比例函数的解析式,将Q的坐标代入反比例函数解析式中即可求出m的值.
(1)连接AC交BD于点E,
在和中,
.
,
.
,
设 ,
则有,
解得 .
在中,
,
,
.
(2)①连接AQ,取AD的中点F,连接QF,
∵,,
为等边三角形,
.
∵,,
为等边三角形,
,
,
.
,
.
,点F是 AD中点,
.
在和中,
,
.
∵为等边三角形,点F为AD中点,
,
∴C,Q,F三点共线.
∵,,
,
;
②过点Q作交AC于点G,过点F作交AC于点H,
∵,
.
∵点F是AD中点,
,
.
∵,
,
,
即,
解得,
,
∴点Q的坐标为.
,
∴点A的坐标为,
设反比例函数的解析式为 ,
将点A代入反比例函数中,得,
∴反比例函数的解析式为.
将点Q的坐标代入反比例函数的解析式中,有
,
解得 或(舍去).
科目:初中数学 来源: 题型:
【题目】某校组织数学兴趣探究活动,爱思考的小实同学在探究两条直线的位置关系查阅资料时发现,两条中线互相垂直的三角形称为“中垂三角形”.如图1、图2、图3中,AF、BE是△ABC的中线,AF⊥BE于点P,像△ABC这样的三角形均称为“中垂三角形”.
(1)如图1,当∠PAB=45°,AB=6时,AC= ,BC= ;如图2,当sin∠PAB=,AB=4时,AC= ,BC= ;
(2)请你观察(1)中的计算结果,猜想AB2、BC2、AC2三者之间的关系,用等式表示出来,并利用图3证明你的结论.
(3)如图4,在△ABC中,AB=4,BC=2,D、E、F分别是边AB、AC、BC的中点,连结DE并延长至G,使得GE=DE,连结BG,当BG⊥AC于点M时,求GF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学九年级男生共250人,现随机抽取了部分九年级男生进行引体向上测试,相关数据的统计图如下.设学生引体向上测试成绩为x(单位:个).学校规定:当0≤x<2时成绩等级为不及格,当2≤x<4时成绩等级为及格,当4≤x<6时成绩等级为良好,当x≥6时成绩等级为优秀.样本中引体向上成绩优秀的人数占30%,成绩为1个和2个的人数相同.
(1)补全统计图;
(2)估计全校九年级男生引体向上测试不及格的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,,,是等腰直角三角形且,把绕点B顺时针旋转,得到,把绕点C顺时针旋转,得到,依此类推,得到的等腰直角三角形的直角顶点的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴交于点,与轴交于点,抛物线经过两点,与轴的另一个交点为,点是第一象限抛物线上的点,连结交直线于点,设点的横坐为,与的比值为.
(1)__________;
(2)当取最大值时,__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图AD是△ABC的角平分线,过点D分别作AC、AB的平行线,交AB于点E,交AC于点F.
(1)求证:四边形AEDF是菱形.
(2)若AF=13,AD=24.求四边形AEDF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们常见的汽车玻璃升降器如图①所示,图②和图③是升降器的示意图,其原理可以看作是主臂PB绕固定的点O旋转,当端点P在固定的扇形齿轮上运动时,通过叉臂式结构(点B可在MN上滑动)的玻璃支架MN带动玻璃沿导轨作上下运动而达到玻璃升降目的.点O和点P,A,B在同一直线上.当点P与点E重合时,窗户完全闭合(图②),此时∠ABC=30°;当点P与点F重合时,窗户完全打开(图③).已知的半径OP=5cm,=cm,OA=AB=AC=20cm.
(1)当窗户完全闭合时,OC=_____cm.
(2)当窗户完全打开时,PC=_____cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,对于某点(不是原点),称以点为圆心,长为半径的圆为点的半长圆;对于点,若将点的半长圆绕原点旋转,能够使得点位于点的半长圆内部或圆上,则称点能被点半长捕获(或点能半长捕获点).
(1)如图,在平面直角坐标系中,点,则点的半长圆的面积为__________;下列各点、、、,能被点半长捕获的点有__________;
(2)已知点,,,①如图,点,当时,线段上的所有点均可以被点半长捕获,求的取值范围;②若对于平面上的任意点(原点除外)都不能半长捕获线段上的所有点,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在开发区建设中,要拆除烟囱AB,在地面上事先画定以B为圆心,半径与AB等长的圆形危险区,现在从离B点21米远的建筑物CD顶点C,测得A点的仰角为,B点的俯角为,问离B点35米远的文物保护区是否在危险区内,请通过计算说明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com