【题目】在平面直角坐标系中,对于某点(不是原点),称以点为圆心,长为半径的圆为点的半长圆;对于点,若将点的半长圆绕原点旋转,能够使得点位于点的半长圆内部或圆上,则称点能被点半长捕获(或点能半长捕获点).
(1)如图,在平面直角坐标系中,点,则点的半长圆的面积为__________;下列各点、、、,能被点半长捕获的点有__________;
(2)已知点,,,①如图,点,当时,线段上的所有点均可以被点半长捕获,求的取值范围;②若对于平面上的任意点(原点除外)都不能半长捕获线段上的所有点,直接写出的取值范围.
【答案】(1)S=π,B、C两点;(2)①-2≤n≤或≤6n≤2;(2)②<t<
【解析】
(1)根据定义,半径为1,直接求面积;根据被捕获的定义,设点到圆心的距离为d,只需r≤d≤3r,即可以捕获;
(2)①利用r≤d≤3r这个性质,分别计算临界点:点E和点F能够被捕获的范围,然后去公共部分即可;
(2)②在上一问的基础上,只需解得的不等式无公共部分,则不能捕获
(1)∵点
∴圆的半径为1,面积为π
根据被捕获的定义,设点到圆心的距离为d,只需r≤d≤3r,即可以捕获
即当1≤d≤3时,点可被捕获
,则d=,不符合;
,d=2,符合;
,d=2,符合;
,d=,不符合
(2)①∵点N(0,n)
∴圆的半径为,所以只需满足≤d≤时,则可被捕获
点E(1,0),则d=1,要想能够被捕获,则:
≤1≤
解得:≤n≤或≤n≤
点F(1,),则d=2
同理,≤2≤
解得:≤n≤或≤n≤
合并得:≤n≤或≤n≤
(2)②同上,圆的半径为,所以只需满足≤d≤时,则可被捕获
点E(t,0),则d=t,要想能够被捕获,则:≤n≤或≤n≤
点F(t,),则d=,要想能够被捕获,则:≤n≤或≤n≤
∵任意值都不能捕获,∴得到的两个不等式无公共部分,即:
和>
在结合t>0,解得:0<t<
科目:初中数学 来源: 题型:
【题目】下面是“作以已知线段为斜边的等腰直角三角形”的尺规作图过程.
已知:线段.
求作:以为斜边的一个等腰直角三角形.
作法:如图,
(1)分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点;
(2)作直线,交于点;
(3)以为圆心,的长为半径作圆,交直线于点;
(4)连接,.
则即为所求作的三角形.
请回答:在上面的作图过程中,①是直角三角形的依据是________;②是等腰三角形的依据是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形中,,,对角线,点在轴上,与轴平行,点在轴上.
(1)求的度数.
(2)点在对角线上,点在四边形内且在点的右边,连接,已知,,设.
①求的长(用含的代数式表示);
②若某一反比例函数图象同时经过点、,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,点是的中点,点为对角线上的动点,设,作于点,连结并延长至点,使得,作点关于的对称点,交于点,连结.
(1)求证:;
(2)当点运动到对角线的中点时,求的周长;
(3)在点的运动的过程中,是否可以为等腰三角形?若可以,求出的值;若不可以,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.
a.甲、乙两校40名学生成绩的频数分布统计表如下:
成绩x 学校 | |||||
甲 | 4 | 11 | 13 | 10 | 2 |
乙 | 6 | 3 | 15 | 14 | 2 |
(说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)
b.甲校成绩在这一组的是:
70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙两校成绩的平均分、中位数、众数如下:
学校 | 平均分 | 中位数 | 众数 |
甲 | 74.2 | n | 5 |
乙 | 73.5 | 76 | 84 |
根据以上信息,回答下列问题:
(1)写出表中n的值;
(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是_____________校的学生(填“甲”或“乙”),理由是__________;
(3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线.
(1)求抛物线的对称轴(用含的式子去表示);
(2)若点,,都在抛物线上,则、、的大小关系为_______;
(3)直线与轴交于点,与轴交于点,过点作垂直于轴的直线与抛物线有两个交点,在抛物线对称轴右侧的点记为,当为钝角三角形时,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是⊙O的直径,弧BA=弧BC,BD交AC于点E,点F在DB的延长线上,且∠BAF=∠C.
(1)求证:AF是⊙O的切线;
(2)求证:△ABE∽△DBA;
(3)若BD=8,BE=6,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,抛物线与轴交于点两点,与轴交于点,直线经过点,与抛物线另一个交点为,点是抛物线上的一个动点,过点作轴于点,交直线于点
(1)求抛物线的解析式
(2)当点在直线上方,且是以为腰的等腰三角形时,求的坐标
(3)如图2所示,若点为对称轴右侧抛物线上一点,连接,以为直角顶点,线段为较长直角边,构造两直角边比为的,是否存在点,使点恰好落在直线上?若存在,请直接写出相应点的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠CAB=90°,AB=AC,点A在y轴上,BC∥x轴,点B.将△ABC绕点A顺时针旋转的△AB′C′,当点B′落在x轴的正半轴上时,点C′的坐标为( )
A.(﹣,﹣1)B.(﹣,﹣1)
C.(﹣,+1)D.(﹣,﹣1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com