【题目】已知如图,中,,点在上,,点、分别在边、上移动,则的周长的最小值是__________.
【答案】
【解析】
作P关于AO,BO的对称点E,F,连接EF与OA,OB交于MN,此时△PMN周长最小;连接OE,OF,作OG⊥EF,利用勾股定理求出EG,再根据等腰三角形性质可得EF.
作P关于AO,BO的对称点E,F,连接EF与OA,OB交于MN,此时△PMN周长最小;连接OE,OF,作OG⊥EF
根据轴对称性质:PM=EM,PN=NF,OE=OP,
OE=OF=OP=10,
∠EOA=∠AOP,∠BOF=∠POB
∵∠AOP+∠POB=60°
∴∠EOF=60°×2=120°
∴∠OEF=
∵OG⊥EF
∴OG=OE=
∴EG=
所以EF=2EG=10
由已知可得△PMN的周长=PM+MN+PN=EF=10
故答案为:10
科目:初中数学 来源: 题型:
【题目】(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是 ;
(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;
(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.
(1)本次接受问卷调查的学生有________名.
(2)补全条形统计图.
(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.
(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2﹣mx+n经过点A(3,0).
(1)当m+n=﹣1时,求该抛物线的解析式和顶点坐标;
(2)当B点坐标为(0,﹣3)时,若抛物线y=x2﹣mx+n图象的顶点在直线AB上,求m、n的值;
(3)①设m=﹣2,当0≤x≤3时,求抛物线y=x2﹣mx+n的最小值;
②若当0≤x≤3时,二次函数y=x2﹣mx+n的最小值为﹣4,求m、n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,点D在⊙O上,BD=BC,DE⊥AC,垂足为点E,DE与⊙O和AB分别交于点M、F.连接BO、DO、AM.
(1)证明:BD是⊙O的切线;
(2)若tan∠AMD=,AD=2,求⊙O的半径长;
(3)在(2)的条件下,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:
①abc>0;②8a+c<0;③b2﹣4ac>0;④当y<0时,x<﹣1或x>2.
其中正确的有( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC 是等边三角形,点 P 在△ABC 内,PA=2,将△PAB 绕点 A 逆时针旋转得到△P1AC,则 P1P 的长等于( )
A. 2 B. C. D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在实际问题中往往需要求得方程的近似解,这个时候,我们通常利用函数的图象来完成.如,求方程x2﹣2x﹣2=0的实数根的近似解,观察函数y=x2﹣2x﹣2的图象,发现,当自变量为2时,函数值小于0(点(2,﹣2)在x轴下方),当自变量为3时,函数值大于0(点(3,1)在x轴上方).因为抛物线y=x2﹣2x﹣2是一条连续不断的曲线,所以抛物线y=x2﹣2x﹣2在2<x<3这一段经过x轴,也就是说,当x取2、3之间的某个值时,函数值为0,即方程x2﹣2x﹣2=0在2、3之间有根.进一步,我们取2和3的平均数2.5,计算可知,对应的数值为﹣0.75,与自变量为3的函数值异号,所以这个根在2.5与3之间任意一个数作为近似解,该近似解与真实值的差都不会大于3﹣2.5=0.5.重复以上操作,随着操作次数增加,根的近似值越来越接近真实值.用以上方法求得方程x2﹣2x﹣2=0的小于0的解,并且使得所求的近似解与真实值的差不超过0.3,该近似解为_____
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com