【题目】如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠 得到△GBE,且点G在矩形ABCD内部.将BG延长交DC 于点F,若DC=nDF,则 =______.
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,点E在边AB上,连结DE,CE.
(1)若∠A=∠B=∠DEC=50°,找出图中的相似三角形,并说明理由;
(2)若四边形ABCD为矩形,AB=5,BC=2,且图中的三个三角形都相似,求AE的长.
(3)若∠A=∠B=90°,AD<BC,图中的三个三角形都相似,请判断AE和BE的数量关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O 上一点,且,过点D作DE⊥BC,垂足为E.
(1)求证:CD平分∠ACE;
(2)判断直线ED与⊙O的位置关系,并说明理由;
(3)求线段CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中BC边上的垂直平分线DE与∠BAC得平分线交于点E,EF⊥AB交AB的延长线于点F,EG⊥AC交于点G.
求证:(1)BF=CG;(2)AF=(AB+AC).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把形如x2=a(其中a是常数且a≥0)这样的方程叫做x的完全平方方程.
如x2=9,(3x﹣2)2=25,…都是完全平方方程.
那么如何求解完全平方方程呢?
探究思路:
我们可以利用“乘方运算”把二次方程转化为一次方程进行求解.
如:解完全平方方程x2=9的思路是:由(+3)2=9,(﹣3)2=9可得x1=3,x2=﹣3.
解决问题:
(1)解方程:(3x﹣2)2=25.
解题思路:我们只要把 3x﹣2 看成一个整体就可以利用乘方运算进一步求解方程了.
解:根据乘方运算,得3x﹣2=5 或 3x﹣2= .
分别解这两个一元一次方程,得x1=,x2=﹣1.
(2)解方程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AD、AE分别是△ABC的中线、高,且AB=4cm,AC=3cm,请解答下列问题:
(1)△ABD与△ACD的面积大小有怎样的关系?并说明理由.
(2)△ABD与△ACD的周长之差是多少?
(3)当AE=2.5cm ,BC=6cm时,试求△ABD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新泰特产专卖店销售樱桃,其进价为每千克30元,按每千克50元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10千克,若该专卖店销售这种樱桃想要平均每天获利2240元,请回答:
(1)每千克樱桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com