【题目】如图,在平面直角坐标系中有点A(-4,0)、B(0,3)、P(a,-a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D
(1) 当a=-4时
① 在图中画出线段CD,保留作图痕迹
② 线段CD向下平移 个单位时,四边形ABCD为菱形
(2) 当a=___________时,四边形ABCD为正方形
【答案】(1)①见解析;②2;(2).
【解析】
(1)①分别作出A、B关于点P的对称点C、D即可;
②判断出平移前后点C的坐标即可解决问题;
(2)当时,四边形ABCD是正方形,由此构建方程即可解决问题.
解:①线段CD如图所示;
②∵线段CD与AB关于点P中心对称,∴四边形ABCD是平行四边形,
在△AOB中,由勾股定理,得,
∴当AB=BC=5时,四边形ABCD是菱形,此时C(-4,6),原来点C坐标为(-4,8),
∴线段CD向下平移2个单位时,四边形ABCD为菱形;
故答案为2;
(2)∵四边形ABCD是平行四边形,AB=5,
∴当时,四边形ABCD是正方形,
∴,
解得,或(不合题意,舍去).
∴当时,四边形ABCD为正方形.
故答案为.
科目:初中数学 来源: 题型:
【题目】在下面的网格中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(﹣3,0),(﹣1,﹣1).
(1)请在图中画出平面直角坐标系,并直接写出点A的坐标.
(2)将△ABC绕着坐标原点顺时针旋转90°,画出旋转后的△A′B'C′.
(3)接写出在上述旋转过程中,点A所经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,秋千链子的长度为3 m,静止时的秋千踏板(大小忽略不计)距地面0.5 m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为60°,则秋千踏板与地面的最大距离约为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是正方形ABCD的对角线BD延长线上的一点,连接PA,过点P作PE⊥PA交BC的延长线于点E,过点E作EF⊥BP于点F,则下列结论中:①PA=PE;②CE=PD;③BF﹣PD=BD;④S△PEF=S△ADP,正确的是___(填写所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.
(1)求抛物线的解析式;
(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当时,求t的值;
(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的 速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.
(1)当t= 时,PQ∥AB
(2)当t为何值时,△PCQ的面积等于5cm2?
(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB能否垂直?若能,求出相应的t值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为( )
A. 3B. 4C. 6D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=4,若将△ABC绕点B顺时针旋转60°,点A的对应点为点A′,点C的对应点为点C′,点D为A′B的中点,连接AD.则点A的运动路径与线段AD、A′D围成的阴影部分面积是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com