3£®Èçͼ£¬¹ýµãF£¨0£¬1£©µÄÖ±Ïßy=kx+bÓëÅ×ÎïÏßy=$\frac{1}{4}$x2½»ÓÚM£¨x1£¬y1£©ºÍN£¨x2£¬y2£©Á½µã£¨ÆäÖÐx1£¼0£¬x2£¾0£©£®
£¨1£©ÇóbµÄÖµ£»
£¨2£©µ±k=1ʱ£¬ÇóµãM£¬NµÄ×ø±ê£»
£¨3£©·Ö±ð¹ýµãM¡¢N×÷Ö±Ïßl£ºy=-1µÄ´¹Ïߣ¬´¹×ã·Ö±ðÊÇM1£¬N1£¬Ì½¾¿µ±k=1ʱ£¬¡÷NFN1Óë¡÷M1FN1£¬¸÷ÊÇÊ²Ã´ÌØÊâÈý½ÇÐΣ¿Çë˵Ã÷ÀíÓÉ£¬²¢²ÂÏ룺Õâ¸ö½áÂÛ¶ÔÈÎÒâkµÄÖµ¶¼³ÉÁ¢Ã´£¿£¨Ö±½Óд³ö½áÂÛ¼´¿É£©£®

·ÖÎö £¨1£©¸ù¾ÝÖ±Ïßy=kx+b¾­¹ýµãF£¨0£¬1£©¼´¿ÉµÃµ½bµÄÖµ£»
£¨2£©ÁªÁ¢Á½·½³Ì£¬Çó³öxµÄÖµ£¬½ø¶øÇó³öyµÄÖµ£¬¼´¿ÉÇó³öµãMºÍµãNµÄ×ø±ê£»
£¨3£©ÉèÖ±Ïßy=kx+bÓëÅ×ÎïÏßy=$\frac{1}{4}$x2½»ÓÚM£¨x1£¬y1£©ºÍN£¨x2£¬y2£©Á½µã£¬·Ö±ðÓÃx1ºÍx2±íʾ³öNF2ºÍNN12£¬FM12¡¢FN12ºÍM1N12£¬¾Ý´Ë¿ÉÒÔ×÷³öÅжϣ®

½â´ð ½â£º£¨1£©¡ßÖ±Ïßy=kx+b¾­¹ýµãF£¨0£¬1£©£¬
¡àb=1£»
£¨2£©µ±k=1ʱ£¬Ö±Ïßy=x+1£¬
¸ù¾ÝÌâÒâ¿ÉÖª£º$\left\{\begin{array}{l}{y=x+1}\\{y=\frac{1}{4}{x}^{2}}\end{array}\right.$£¬
¼´$\frac{1}{4}$x2=x+1£¬
½âµÃx1=-2$\sqrt{2}$+2£¬x2=2$\sqrt{2}$+2£¬
µ±x=-2$\sqrt{2}$+2ʱ£¬y=-2$\sqrt{2}$+3£¬¼´µãM×ø±êΪ£¨-2$\sqrt{2}$+2£¬-2$\sqrt{2}$+3£©£¬
µ±x=2$\sqrt{2}$+2ʱ£¬y=2$\sqrt{2}$+3£¬¼´µãNµÄ×ø±êΪ£¨2$\sqrt{2}$+2£¬2$\sqrt{2}$+3£©£»
£¨3£©µ±k=1ʱ£¬¡÷NFN1ÊǵÈÑüÈý½ÇÐΣ»¡÷M1FN1ÊÇÖ±½ÇÈý½ÇÐΣ»
ÉèÖ±Ïßy=kx+bÓëÅ×ÎïÏßy=$\frac{1}{4}$x2½»ÓÚM£¨x1£¬y1£©ºÍN£¨x2£¬y2£©Á½µã£¬
¡à¿ÉÒԵóö£ºkx+b=$\frac{1}{4}$x2£¬
ÕûÀíµÃ£º$\frac{1}{4}$x2-kx-1=0£¬
¡ßa=$\frac{1}{4}$£¬c=-1£¬
¡àx1•x2=-4£¬
¡÷NFN1ÊǵÈÑüÈý½ÇÐΣ¬
ÀíÓÉÊÇ£ºNF2=x22+£¨y2-1£©2=x22+y22-2y2+1=y22+$\frac{1}{2}$x22+1£¬
NN12=£¨y2+1£©2=y22+2y2+1=y22+$\frac{1}{2}$x22+1£¬
¹ÊNF2=NN12£¬
¼´¡÷NFN1ÊǵÈÑüÈý½ÇÐΣ»
¡÷M1FN1ÊÇÖ±½ÇÈý½ÇÐΣ¨FµãÊÇÖ±½Ç¶¥µã£©£®
ÀíÓÉÈçÏ£ºÉèÖ±ÏßlÓëyÖáµÄ½»µãÊÇF1£¬
FM12=FF12+M1F12=x12+4£¬
FN12=FF12+F1N12=x22+4£¬
M1N12=£¨x1-x2£©2=x12+x22-2x1x2=x12+x22+8£¬
¡àFM12+FN12=M1N12£¬
¡à¡÷M1FN1ÊÇÒÔFµãΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬Óõ½µÄ֪ʶµãÓÐÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµ¡¢µÈÑüÈý½ÇÐεÄÅж¨¡¢Ö±½ÇÈý½ÇÐεÄÅж¨ÒÔ¼°¹´¹É¶¨ÀíµÈ֪ʶ£¬½â´ð£¨3£©ÎʹؼüÊÇ·Ö±ðÓÃÓÃx1ºÍx2±íʾ³öNF2ºÍNN12£¬FM12¡¢FN12ºÍM1N12£¬ÌâÄ¿µÄ×ÛºÏÐÔ²»Ð¡£¬¶ÔѧÉú½âÌâÄÜÁ¦µÄÒªÇóÒ²ºÜ¸ß£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Ò»¸ö³¤·½ÐεÄÒ»±ß³¤Îª3m2+2mn+n2£¬ÓëËüÏàÁÚµÄÁíÒ»±ß±ÈËü³¤m2-mn-4n2£¬ÇóÕâ¸ö³¤·½ÐεÄÖܳ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÔÚÁâÐÎABCDÖУ¬CE¡ÍABÓÚµãE£¬ÒÑÖª¡ÏBCE=30¡ã£¬CE=3cm£¬ÇóÁâÐÎABCDµÄÖܳ¤ºÍÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®a-b=2£¬a2-b2=12£¬Çóa+bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®·Ö½âÒòʽ£º
£¨1£©4a3-a£»
£¨2£©-3a3b+6a2b2-3ab3£®
£¨3£©£¨m+n£©2+8£¨m+n£©+16£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ1£¬Å×ÎïÏßC£ºy=ax2-2x+c¾­¹ýA£¨-1£¬0£©£¬B£¨3£¬0£©Á½µã£¬½»yÖáÓÚµãC
£¨1£©ÇóÅ×ÎïÏßC1µÄ½âÎöʽ£»
£¨2£©µãDÊÇÅ×ÎïÏßC1µÄ¶Ô³ÆÖáÉÏÈÎÒâÒ»µã£¬µ±¡÷BCDµÄÃæ»ýµÈÓÚ¡÷ABCµÄÃæ»ýµÄ$\frac{1}{2}$ʱ£¬ÇóµãDµÄ×ø±ê£»
£¨3£©½«Å×ÎïÏßC1ÔÚA£¬B¼äµÄ²¿·ÖÑØxÖáÉÏ·­ÕÛ£¬·­ÕÛºóµÄͼÐÎÓëÔ­À´Å×ÎïÏßC1µÄÊ£Óಿ·Ö×é³ÉÒ»¸öÐÂͼÐÎC2£¨Èçͼ2Ëùʾ£©£¬Èô¹ýµãF£¨-$\frac{3}{2}$£¬0£©µÄÖ±Ïßl£ºy=kx+b£¨k£¬bΪ³£Êý£©£¬ÓëͼÐÎC2Ö»ÓÐÁ½¸ö¹«¹²µã£¬ÇókµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑ֪ƽÐÐËıßÐÎABCDµÄÃæ»ýΪ1£¬K¡¢L¡¢M¡¢N·Ö±ðÊDZßAB¡¢BC¡¢CD¡¢DAµÄÖе㣬ÓÉAL¡¢AM¡¢BN¡¢BM¡¢CK¡¢CN¡¢DK¡¢DLΧ³ÉµÄ°Ë±ßÐÎEGPHFTQR£¬°Ë±ßÐÎEGPHFTQRµÄÃæ»ýΪ¶àÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬Ö±ÏßABÓëyÖᣬxÖáµÄ½»µãΪA£¬BÁ½µã£¬µãA£¬BµÄ×Ý×ø±ê¡¢ºá×ø±êÈçͼËùʾ£®ÔÚxÖáÉÏÊÇ·ñ´æÔÚÒ»µãp£¬Ê¹S¡÷PAB=3£¿Èô´æÔÚ£¬Çó³öPµãµÄ×ø±ê£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ä³¹«Ë¾×¼±¸10Ô·Ý×éÖ¯Ô±¹¤ÂÃÓΣ®¼×¡¢ÒÒÁ½¼ÒÂÃÐÐÉçµÄ±¨¼Û¾ùΪ2000Ôª/ÈË£¬Á½¼ÒÂÃÐÐÉç¶¼¶Ô10ÈËÒÔÉϵÄÍŶӸø³öÁËÓŻݴëÊ©£º¼×ÂÃÐÐÉç¶ÔÿÃûÔ±¹¤¶¼¸øÓèÆßÎåÕÛÓŻݣ»ÒÒÂÃÐÐÉçÃâÈ¥Ò»Ãû´ø¶ÓÔ±¹¤µÄ·ÑÓã¬¶ÔÆäÓàÔ±¹¤¸øÓè°ËÕÛÓŻݣ®
£¨1£©Èô²Î¼ÓÂÃÓεÄÔ±¹¤¹²ÓÐa£¨a£¾10£©ÈË£¬ÔòÑ¡Ôñ¼×ÂÃÐÐÉ磬ËùÐèÒªµÄ·ÑÓÃΪ1500aÔª£»Ñ¡ÔñÒÒÂÃÐÐÉ磬ËùÐèÒªµÄ·ÑÓÃΪ1600£¨a-1£©Ôª£¨Óú¬aµÄ´úÊýʽ±íʾ£©£»
£¨2£©Èô¸Ã¹«Ë¾×éÖ¯20ÃûÔ±¹¤£¨º¬´ø¶ÓÔ±¹¤£©È¥ÂÃÓΣ¬Ñ¡ÔñÄļÒÂÃÐÐÉç±È½ÏÓŻݣ¿Çëͨ¹ý¼ÆËã˵Ã÷ÀíÓÉ£®
£¨3£©ÒÑÖª¸Ã¹«Ë¾¼Æ»®³é³ö7Ììʱ¼ä×éÖ¯Ô±¹¤ÂÃÓΣ¬Èç¹ûÕâ7ÌìµÄÈÕÆÚÖ®ºÍΪ63µÄÕûÊý±¶£¬ÔòËûÃÇ¿ÉÄÜÓÚ10Ô¼¸ºÅ³ö·¢È¥ÂÃÓΣ¿²¢ËµÃ÷Äã×÷³öÕâÖÖÅжϵÄÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸