【题目】如图,一次函数y=-x+b与反比例函数y=(x>0)的图象交于点A(2,6)和B(m,1)
(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ;
(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.
【答案】(1)y=﹣x+7,y=(2)(0,6)或(0,8)
【解析】分析:(1)把点A的坐标分别代入一次函数y与反比例函数,可得b,k的值,从而得到结论.
(2)把B(m,1)代入反比例函数,得到m的值,从而得到B的坐标.设直线AB与y轴的交点为P,点E的坐标为(0,a),连接AE,BE,则点P的坐标为(0,7),得到PE=|a﹣7|.由S△AEB=S△BEP﹣S△AEP=5, 可求得a的值,从而得到点E的坐标.
详解:(1)∵一次函数y=-x+b与反比例函数y=(x>0)的图象交于点A(2,6),∴6=,k=2×6=12,解得:b=7,k=12.∴一次函数的解析式为,反比例函数的解析式为.
(2)∵B(m,1)在反比例函数上,∴1=,解得:m=12,∴B(12,1).
如图,直线AB与y轴的交点为P,设点E的坐标为(0,a),连接AE,BE,
则点P的坐标为(0,7).
∴PE=|a﹣7|.
∵S△AEB=S△BEP﹣S△AEP=5,
∴×|a﹣7|×(12﹣2)=5.
∴|a﹣7|=1.
∴a1=6,a2=8.
∴点E的坐标为(0,6)或(0,8).
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).
(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;
(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,为数轴上的两个点,点表示的数为,点表示的数为.
(1)现有一只电子蚂蚁从点出发,以每秒个单位长度的速度向左运动,同时另一只电子蚂蚁恰好从点出发,以每秒个单位长度的速度向右运动,设两只电子蚂蚁在数轴上的点处相遇,求点表示的数;
(2)若电子蚂蚁从点出发,以每秒个单位长度的速度向左运动,同时另一电子蚂蚁恰好从点出发,以每秒个单位长度的速度向左运动,设两只电子蚂蚁在数轴上的点处相遇,求点表示的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知某市2017年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.
(1)求y关于x的函数关系式;
(2)若某企业2017年10月份的水费为620元,求该企业2017年10月份的用水量;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=8cm,BC=10cm,AB=6cm,点Q从点A出发以1 cm/s的速度向点D运动,点P从点B出发以2 cm/s的速度向点C运动,P,Q两点同时出发,当点P到达点C时,两点同时停止运动.若设运动时间为t(s)
(1)直接写出:QD=______cm,PC=_______cm;(用含t的式子表示)
(2)当t为何值时,四边形PQDC为平行四边形?
(3)若点P与点C不重合,且DQ≠DP,当t为何值时,△DPQ是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠DBC=90°,∠ABD=30°,∠ADB=75°,AC与BD交于点E,若CE=2AE=4,则DC的长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴的正半轴、y轴的正半轴上,且OA、OC()的长是方程的两个根.
(1)如图,求点A的坐标;
(2)如图,将矩形OABC沿某条直线折叠,使点A与点C重合,折痕交CB于点D,交OA于点E.求直线DE的解析式;
(3)在(2)的条件下,点P在直线DE上,在直线AC上是否存在点Q,使以点A、B、P、Q为顶点的四边形是平行四边形.若存在,请求出点Q坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面内,两条直线L1,L2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线L1,L2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有_____个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com