精英家教网 > 初中数学 > 题目详情

【题目】某服装厂生产一种西装和领带,西装每套定价400元,领带每条定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:

方案①:买一套西装送一条领带;

方案②:西装和领带都按定价的90%付款.

现某客户要到该服装厂购买西装20套,领带x条(x20

1)若该客户按方案①购买,需付款   元(用含x的代数式表示);

若该客户按方案②购买,需付款   元(用含x的代数式表示);

2)若x=30,通过计算说明此时按哪种方案购买较为合算?

3)若两种优惠方案可同时使用,当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法并计算出此种方案的付款金额.

【答案】1 ;(2)按方案①购买较为合算,见解析;(3)可以,理由见解析

【解析】

1)根据题意分别列出代数式,并整理;
2)把x=30代入(1)中两个代数式,计算结果得结论;
3)抓住省钱想方案.两种方案都选用.

1)按方案①购买,需付款:400×20+x-20×50
=元;
按方案②购买,需付款:400×90%×20+50×90%×x
=(元)

2)当

方案①:

方案②:

答:此时按方案①购买较为合算.

3)用方案①买20套西装送20条领带,再用方案②买10条领带.

总价钱为

所以可以

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】目前节能灯在城市已基本普及,今年云南省面向县级及农村地区推广,为相应号召,某商场计划用3800元购进节能灯120只,这两种节能灯的进价、售价如下表:

1)求甲、乙两种节能灯各进多少只?

2)全部售完120只节能灯后,该商场获利润多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图抛物线ly=﹣x2+bx+cbc为常数),其顶点E在正方形ABCD内或边上已知点A(1,2),B(1,1),C(2,1).

(1)直接写出点D的坐标_____________;

(2)l经过点BCl的解析式

(3)lx轴交于点MNl的顶点E与点D重合时求线段MN的值当顶点E在正方形ABCD内或边上时直接写出线段MN的取值范围

(4)l经过正方形ABCD的两个顶点直接写出所有符合条件的c的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论:

(1)c<0;

(2)b>0;

(3)4a+2b+c>0;

(4)(a+c)2<b2

其中不正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)将下列各数填在相应的集合里.

2.5),(12|2|220 1.5

正数集合{    …}

分数集合{    …}

2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用号把这些数连接起来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:

在网格中画出长为的线段AB.

在网格中画出一个腰长为、面积为3的等腰DEF

(3)利用网格,可求出三边长分别为的三角形面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,抛物线y=x2+bx+c过点A30),B10),交y轴于点C,点P是该抛物线上一动点,点PC点沿抛物线向A点运动(点P不与点A重合),过点PPDy轴交直线AC于点D

1)求抛物线的解析式;

2)求点P在运动的过程中线段PD长度的最大值;

3APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;

4)在抛物线对称轴上是否存在点M使|MAMC|最大?若存在请求出点M的坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下面的点阵图和相应的等式,探究其中的规律:

(1)认真观察,并在④后面的横线上写出相应的等式.

1=1 1+2==3 1+2+3==6    

(2)结合(1)观察下列点阵图,并在⑤后面的横线上写出相应的等式.

1=121+3=223+6=326+10=42   

(3)通过猜想,写出(2)中与第n个点阵相对应的等式   

【答案】(1)10;(2)见解析;(3)

【解析】试题分析:(1)根据①②③观察会发现第四个式子的等号的左边是1+2+3+4,右边分子上是(1+4)×4,从而得到规律;

(2)通过观察发现左边是10+15,右边是255的平方;

(3)过对一些特殊式子进行整理、变形、观察、比较,归纳出一般规律.

试题解析:(1)根据题中所给出的规律可知:1+2+3+4==10;

(2)由图示可知点的总数是5×5=25,所以10+15=52

(3)由(1)(2)可知

点睛:主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.

型】解答
束】
19

【题目】如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆最大载重48吨的大型货车,货车的货箱是长14m,宽2.5m,高3m的长方体,现有甲种货物18吨,乙种货物70m3,而甲种货物每吨的体积为2.5m3,乙种货物每立方米0.5吨.问:

1)甲、乙两种货物是否都能装上车?请说明理由.

2)为了最大地利用车的载重量和货箱的容积,两种货物应各装多少吨?

查看答案和解析>>

同步练习册答案