【题目】如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC的中点,点M,N分别是AC,BD的中点,连接EM,MF,FN,NE,要使四边形EMFN为正方形,则需添加的条件是( )
A. AB=CD,AB⊥CDB. AB=CD,AD=BC
C. AB=CD,AC⊥BDD. AB=CD,AD∥BC
【答案】A
【解析】
证出EN、NF、FM、ME分别是△ABD、△BCD、△ABC、△ACD的中位线,得出EN∥AB∥FM,ME∥CD∥NF,EN=AB=FM,ME=CD=NF,证出四边形EMFN为平行四边形,当AB=CD时,EN=FM=ME=NF,得出平行四边形ABCD是菱形;当AB⊥CD时,EN⊥ME,则∠MEN=90°,即可得出菱形EMFN是正方形.
∵点E,F分别是AD,BC的中点,点M,N分别是AC,BD的中点,
∴EN、NF、FM、ME分别是△ABD、△BCD、△ABC、△ACD的中位线,
∴EN∥AB∥FM,ME∥CD∥NF,EN=AB=FM,ME=CD=NF,
∴四边形EMFN为平行四边形,
当AB=CD时,EN=FM=ME=NF,
∴平行四边形ABCD是菱形;
当AB⊥CD时,EN⊥ME,
则∠MEN=90°,
∴菱形EMFN是正方形;
故选A.
科目:初中数学 来源: 题型:
【题目】某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长>50m),中间用一道墙隔开(如图),已知计划中的建筑材料可建围墙的总长为50m,设两饲养室合计长x(m),总占地面积为y(m2)
(1)求y关于x的函数表达式和自变量的取值范围;
(2)若要使两间饲养室占地总面积达到200m2,则各道墙的长度为多少?占地总面积有可能达到210m2吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,已知 AD>AB.在边AD上取点E,连结CE.过点E作EF⊥CE,与边AB的延长线交于点F.
(1)证明:△AEF∽△DCE.
(2)若AB=3,AE =4,AD=10,求线段BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC的中点,点M,N分别是AC,BD的中点,连接EM,MF,FN,NE,要使四边形EMFN为正方形,则需添加的条件是( )
A. AB=CD,AB⊥CDB. AB=CD,AD=BC
C. AB=CD,AC⊥BDD. AB=CD,AD∥BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形ABCD中,AB=4,动点P从点A出发,沿AD方向以每秒1个单位的速度运动,连接BP,作点A关于直线BP的对称点E,设点P的运动时间为t(s).在动点P在射线AD上运动的过程中,则使点E到直线BC的距离等于3时对应的t的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E,F分别在正方形ABCD的边CD,BC上,且,点P在射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转得到线段EG,过点E作GD的垂线QH,垂足为点H,交射线BC于点Q.
(1)如图1,若点E是CD的中点,点P在线段BF上,线段BP,QC,EC的数量关系为________.
(2)如图2,若点E不是CD的中点,点P在线段BF上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.
(3)正方形ABCD的边长为6,,,请直接写出线段BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小林准备进行如下操作试验:把一根长为的铁丝剪成两段,并把每一段各围成一个正方形.
(1)要使这两个正方形的面积之和等于,小林该怎么剪?
(2)小峰对小林说:“这两个正方形的面积之和不可能等于.”他的说法对吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,⊙P的圆心是(2,a)(a >0),半径是2,与y轴相切于点C,直线y=x被⊙P截得的弦AB的长为,则a的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,BC=20 cm,P,Q,M,N分别从A,B,C,D出发,沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=x cm(x≠0),则AP=2x cm,CM=3x cm,DN=x2 cm,
(1)当x为何值时,点P,N重合;
(2)当x为何值是,以P,Q,M,N为顶点的四边形是平行四边形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com