精英家教网 > 初中数学 > 题目详情

【题目】我们知道:有一内角为直角的三角形叫做直角三角形.类似地我们定义:有一内角为的三角形叫做半直角三角形.如图,在平面直角坐标系中,为原点,轴上的一个动点,按顺时针方向排列),与经过三点的交于点平分,连结.显然是半直角三角形.

1)求证:是半直角三角形;

2)求证:

3)若点的坐标为,求的长;

4轴于点,求△ACF与△BCA的面积之比.

【答案】(1)见解析 (2)见解析 (3)见解析 (4)见解析

【解析】

(1)先求得∠ADE=45°,由同弧所对的圆周角可知:∠ABE=∠ADE=45°。根据定义即可得出答案;

(2)根据垂直平分线的性质得:AD=BD,由等角对等边得∠DAB=∠DBA,由D、B、A、E四点共圆,则∠DBA+∠DEA=180°,可得结论;

(3)设圆的半径为r,根据勾股定理可列方程求出r值,由同弧所对的圆心角和圆周角的关系可得∠EMA=2∠ABE=90°,根据勾股定理可得结论;

(4)先证明△ADE≌△CDE,则∠EAC=∠ACE,做辅助线可知:△DGA是等腰直角三角形,由△ACF∽△BCA,由面积比等于相似比即可求出答案。

解:(1)∵∠ADC=90°,DE平分∠ADC,∴∠ADE=45°,∵

是半直角三角形

(2)∵OM⊥AB,OA=OB,

∴AD=BD,

∴∠DAB=∠DBA,

∵∠DEB=∠DAB,

∴∠DBA=∠DEB,

∵D、B、A、E四点共圆,

∴∠DBA+∠DEA=180°,

∵∠DEB+∠DEC=180°,

∴∠DEA=∠DEC

(3)

如上图1,连接AM,ME,设的半径为r

的坐标为

解得的半径为

∴∠EMA=2∠ABE=90°

(4)

如图2,∵∠ADE=∠CDE=45°,∠DEA=∠DEC,

∴∠DCB=∠DAE

∵∠DAE=∠DBC

∴∠DCB=∠DBC

∴BD=DC=AD

∵DE=DE

∴△ADE≌△CDE

∴AE=CE

∴∠EAC=∠ACE

延长DE交AC于点G,过A作AH⊥BC于H

∴DG⊥AC

∴△DGA是等腰直角三角形

∴∠DAG=45°

∵∠FAC=∠ABC=45°,∠ACB=∠ACF

∴△ACF∽△BCA

∵点D坐标(0,4)

∴OD=4

由勾股定理得AD=

∴AG=

∴AC=2AG=

∵∠ABC=45°,AB=4

∴AH=BH=

由勾股定理得:CH=

∴BC=BH+CH=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.ABx轴,AB=4cm,最低点Cx轴上,高CH=1cmBD=2cm.则右轮廓线DFE所在抛物线的函数解析式为__________________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

(1)求yx之间的函数表达式;

(2)设商品每天的总利润为W(元),求Wx之间的函数表达式(利润=收入-成本);

(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:

(1)写出方程ax2+bx+c=0的两个根;

(2)写出不等式ax2+bx+c<0的解集;

(3)若方程ax2+bx+c+k=0有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为4,以点A为圆心,2为半径作圆,E是⊙A上的任意一点,将点E绕点D按逆时针方向转转90°得到点F,则线段AF的长的最小值____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O上的点,C是⊙O上的点,点DAB的延长线上,∠BCD=BAC.

(1)求证:CD是⊙O的切线;

(2)若∠D=30°,BD=2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是边长为4的正三角形,以AB边作正方形ABDE,点P和点Q分别是线段AC和线段BC上的中点,连接AQBP相交于点M,则点MDE的距离是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B,

(1)求证:AD是⊙O的切线.

(2)若BC=8,tanB=,求⊙O 的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yx2+ax+bx轴交于点A(﹣10),B30).

1)求抛物线的解析式;

2)过点D0)作x轴的平行线交抛物线于EF两点,求EF的长;

3)当时,直接写出x的取值范围是   

查看答案和解析>>

同步练习册答案