精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,点DBC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AEDAEBC交于点F.

1)填空:∠ADC= 度;

2)当∠C=20°时,判断DEAC的位置关系,并说明理由。

【答案】(1)80;(2)DEAC,理由见解析.

【解析】

(1)根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;

(2)∠ADC=80°,可以求得∠ADB=100°,由△ABD沿AD折叠得到△AED,可得∠ADE=∠ADB=100°,继而根据三角形外角的性质可求得∠EDF=20°,继而可得∠EDF∠C,从而可得DE∥AC.

(1)ADC=∠B+∠BAD=50°+30°=80°

故答案为:80

(2)DE∥AC,理由如下:

∵∠B=50°∠BAD=30°

∴∠ADC=50°+30°=80°

∠ADB=180°-∠ADC=100°

∵△ABD沿AD折叠得到△AED

∴∠ADE=∠ADB=100°

∴∠EDF=∠ADE -∠ADF=100°-80°=20°

∵∠C=20°

∴∠EDF∠C

∴DE∥AC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,EF是四边形ABCD对角线AC上的两点,ADBCDFBEAE=CF

求证:(1AFD≌△CEB

2)四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;

(2如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;

(3若改变(2中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2020年春节,一场新冠病毒疫情由武汉开始席卷了整个中华地区,全国人民齐心协力、共同抗疫.为了防止感染,口罩成为了大众纷纷抢购的必需品,由于需求增加导致价格不断走高,引起了民众与政府的高度关注,据统计:20202月份一盒口罩价格比20201月份上涨了,某市民202023日在某超市订购了一盒口罩花了52元.

1)问:20201月份一盒口罩的价格为多少元?

2)某超市将进货价为每盒39元的口罩,按202023日价格出售,平均一天能销售出100盒,经调查表明:口罩的售价每盒下降1元,其口罩销售量就增加10盒,超市为了实现销售口罩每天有1320元的利润,并且尽可能让顾客得到实惠,每盒口罩的售价应该下降多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形中,在边上取两点,使.若 则以为边长的三角形的形状为(

A.锐角三角形B.直角三角形C.钝角三角形D.的值而定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,BE、BF分别是∠ABC与它的邻补角∠ABD的平分线,AE⊥BE,垂足为点E,AF⊥BF,垂足为点F,EF分别交边AB、AC于点M和N.求证:
(1)四边形AFBE是矩形;
(2)MN=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列一组图形中的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……,按此规律第5个图中共有点的个数是( )

A. 31 B. 46 C. 51 D. 66

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,点AB的坐标分别为A(a0)B(b0),且ab满足|2a+6|+(2a3b+12)20,现同时将点AB分别向左平移2个单位,再向上平移2个单位,分别得到点AB的对应点CD,连接ACBD

(1)请直接写出AB两点的坐标;

(2)如图2,点P是线段AC上的一个动点,点Q是线段CD的中点,连接PQPO,当点P在线段AC上移动时(不与AC重合),请找出∠PQD,∠OPQ,∠POB的数量关系,并证明你的结论;

(3)在坐标轴上是否存在点M,使三角形MAD的面积与三角形ACD的面积相等?若存在,直接写出点M的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学在今年423日的世界读书日开展人人喜爱阅读,争当阅读能手活动,同学们积极响应,涌现出大批的阅读能手.为了激励同学们的阅读热情,养成每天阅读的好习惯,学校对阅读能手进行了奖励表彰,计划用2700元来购买甲、乙、丙三种书籍共100本作为奖品,已知甲、乙、丙三种书的价格比为223,甲种书每本20元.

1)求出乙、丙两种书的每本各多少元?

2)若学校购买甲种书的数量是乙种书的1.5倍,恰好用完计划资金,求甲、乙、丙三种书各买了多少本?

3)在活动中,同学们表现优秀,学校决定提升奖励档次,增加了245元的购书款,在购买书籍总数不变的情况下,求丙种书最多可以买多少本?

4)七(1)班阅读氛围浓厚,同伴之间交换书籍共享阅读,已知甲种书籍共270页,小明同学阅读甲种书籍每天21页,阅读5天后,发现同伴比他看得快,为了和同伴及时交换书籍,接下来小明每天多读了a页(20a40),结果再用了b天读完,求小明读完整本书共用了多少天?

查看答案和解析>>

同步练习册答案