| A. | ①②④ | B. | ②④⑤ | C. | ①②③④ | D. | ①②③⑤ |
分析 由两角相等的两个三角形相似得出①②正确,由两边成比例且夹角相等的两个三角形相似得出④正确;即可得出结果.
解答 解:∵∠A=∠A,∠AED=∠B,
∴△ADE∽△ACB,①正确;
∵∠A=∠A,∠ADE=∠C,
∴△ADE∽△ACB,②正确;
∵∠A=∠A,$\frac{AD}{AC}=\frac{AE}{AB}$,
∴△ADE∽△ACB,④正确;
由$\frac{AE}{AB}=\frac{DE}{BC}$,或AC2=AD•AE不能证明△ADE与△ACB相似.
故选:A.
点评 本题考查了相似三角形的判定定理:
(1)两角对应相等的两个三角形相似;
(2)两边对应成比例且夹角相等的两个三角形相似;
(3)三边对应成比例的两个三角形相似;
(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.
科目:初中数学 来源: 题型:选择题
| A. | 3x5-4x3=-x2 | B. | 2$\sqrt{3}+2\sqrt{2}=2\sqrt{5}$ | ||
| C. | (-x)4•(-x2)=-x8 | D. | (3a5x3-9ax5)÷(-3ax3)=3x2-a4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 0.12×10-6 | B. | 12×10-8 | C. | 1.2×10-6 | D. | 1.2×10-7 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 0.5m | B. | 1m | C. | 1.5m | D. | 2m |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$) | B. | ($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$) | C. | (-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$) | D. | (-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com