【题目】已知m,n分别是关于x的一元二次方程ax2+bx+c=a与ax2+bx+c=b的一个根,且m=n+1.
(1)当m=2,a=﹣1时,求b与c的值;
(2)用只含字母a,n的代数式表示b;
(3)当a<0时,函数y=ax2+bx+c满足b2﹣4ac=a,b+c≥2a,n≤﹣,求a的取值范围.
【答案】(1)b=1,c=1;(2);(3)-≤a≤-.
【解析】
(1)由已知求出n,根据方程根的定义将m,n,a的值代入方程即可求解;
(2)根据方程根的定义将m,n的值代入方程消去c求解得到,再利用m+n=1,消去m,即可求出b只用字母a、n表示代数式,
(3)将(2)结论代入方程可得,由可得,继而可得,根据n的取值范围即可确定a的取值范围.
(1)因为m,n分别是关于x的一元二次方程与的一个根,
所以,
由m=n+1,m=2得n = 1
把n=1,m=2,a = -1,代入(*)得,
,
解得;
(2)由(1)的方程组(*)中①-②,得
,
,由m=n+1,得m-n=1,
故a,
所以,
从而;
(3)把代入方程组(*)中②,得
,
由≥2a得
≥2a,
当a<0时,n≥-1,
由n≤-得,-1≤n≤-,
由,且,得
,
整理得,,因为a<0
所以,,
即,
由于在-1≤n≤-时随n的增大而增大,
所以当n= -1时,a= -,当n= -时,a= -
即-≤a≤- .
科目:初中数学 来源: 题型:
【题目】如图,在直角三角形ABC中,∠C=90°,AC=2,BC=2,点O是边AB上的一个动点,以点O为圆心,OA为半径作⊙O,与边AC交于点M.
(1)如图1,当⊙O经过点C时,⊙O的直径是 ;
(2)如图2,当⊙O与边BC相切时,切点为点N,试求⊙O与△ABC重合部分的面积;
(3)如图3,当⊙O与边BC相交时,交点为E、F,设CM=x,就判断AEAF是否为定值,若是,求出这个定值;若不是,请用含x的代数式表示.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线与轴相交于点,与轴相交于点,以点为圆心,线段的长为半径画弧,与直线位于第一象限的部分相交于点,则点的坐标为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为( )
A.y=x2+B.y=x2+
C.y=x2+2D.y=x2+2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD⊥BC于点D,点F为AB上一点,连接CF,过点B作BE⊥BC交CF的延长线于点E,交AD于点H,且∠1=∠2
(1)求证:AB=AC;
(2)若∠1=22°,∠AFC=110°,求∠BCE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,反比例函数(k是常数,且)的图象经过点.
(1)若b=4,求y关于x的函数表达式;
(2)点也在反比例函数y的图象上:
①当且时,求b的取值范围;
②若B在第二象限,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com