精英家教网 > 初中数学 > 题目详情

【题目】综合与实践

问题情境

综合与实践课上,老师让同学们以“折纸”为主题开展数学活动.如图1,有一张长为4,宽为3的矩形纸片).

操作发现

1)快乐小组先将图1中的矩形纸片沿直线折叠,使得点落在点处,得到图2,他们发现,请你证明这个结论;

2)创新小组将图2中的矩形纸片展开后继续折叠,使得点落在对角线上的点处,折痕为,得到图3,则折痕__________

实践探究

3)前进小组在创新小组的操作基础上,将图3中的纸片展开,再将矩形纸片沿直线折叠,使得点落在对角线上的点处,然后将纸片展平.如图4所示,折痕于点,交于点,试判断的形状并证明你的结论.

【答案】(1)证明见解析;(2);(3)为等腰三角形,理由见解析.

【解析】

1)利用矩形和折叠的性质分别得到,然后根据AAS定理证明,从而求证

2)根据勾股定理求得BD的长,设AF=FG=x,然后利用折叠的性质及勾股定理列方程求出AF的值,最后再利用勾股定理求BF

3)利用折叠的性质得到垂直平分,从而得到,然后利用等角对等边判定三角形的形状.

解:(1)如图2四边形为矩形,

由折叠得

中,

2)如图3,由题意可知:AB=BG=3AD=4,∠A=FGB=90°

BD=

DG=BD-BG=5-3=2

AF=FG=x,则DF=4-x

RtFGD中,

解得:

RtABF中,

故答案为:

3)如图4为等腰三角形.

理由如下:

折叠得到

垂直平分

折叠得到

为等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,长方形纸片ABCD的长AD9cm,宽AB3cm,将其折叠,使点D与点B重合.

求:(1)折叠后DE的长;(2)以折痕EF为边的正方形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,,分别为,边上的高,连接,过点与点中点,连接

1)如图,若点与点重合,求证:

2)如图,请写出之间的关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在,作的垂直平分线,交于点,交于点,连接,若,则

A.2B.1C.D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC 是等边三角形,D 为 CB 延长线上一点,E 为 BC 延长线上点.

(1)BD、BC CE 满足什么条件时,△ADB∽△EAC?

(2)当△ADB∽△EAC 时,求∠DAE 的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中RtAOBRtDCA,其中B04),C20).连接BD

1)求直线BD的解析式;

2)点E是直线AD上一点,连接BE,以BEED为一组邻边作BEDF,当BEDF的面积为3时,求点E的坐标;

3)如图2,将DAC沿x轴向左平移,平移距离大于0,记平移后的DACDAC,连接DADB,当DAB为等腰三角形时,直接写出点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长分别为的两个正方形并排放在一起,连结并延长交于点,交于点,则

A. B. 2 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+cx轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点PPF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.

(1)求抛物线的解析式;

(2)PE的长最大时m的值.

(3)Q是平面直角坐标系内一点,在(2)的情况下,以PQCD为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案