【题目】综合与实践
问题情境
综合与实践课上,老师让同学们以“折纸”为主题开展数学活动.如图1,有一张长为4,宽为3的矩形纸片().
操作发现
(1)快乐小组先将图1中的矩形纸片沿直线折叠,使得点落在点处,得到图2,他们发现,请你证明这个结论;
(2)创新小组将图2中的矩形纸片展开后继续折叠,使得点落在对角线上的点处,折痕为,得到图3,则折痕__________;
实践探究
(3)前进小组在创新小组的操作基础上,将图3中的纸片展开,再将矩形纸片沿直线折叠,使得点落在对角线上的点处,然后将纸片展平.如图4所示,折痕交于点,交于点,试判断的形状并证明你的结论.
【答案】(1)证明见解析;(2);(3)为等腰三角形,理由见解析.
【解析】
(1)利用矩形和折叠的性质分别得到,,,,然后根据AAS定理证明,从而求证;
(2)根据勾股定理求得BD的长,设AF=FG=x,然后利用折叠的性质及勾股定理列方程求出AF的值,最后再利用勾股定理求BF;
(3)利用折叠的性质得到垂直平分,从而得到及,然后利用等角对等边判定三角形的形状.
解:(1)如图2,四边形为矩形,
,,
由折叠得,,
,
在和中,
,
;
(2)如图3,由题意可知:AB=BG=3,AD=4,∠A=∠FGB=90°
∴BD=
∴DG=BD-BG=5-3=2
设AF=FG=x,则DF=4-x
在Rt△FGD中,
解得:
在Rt△ABF中,
故答案为:;
(3)如图4,为等腰三角形.
理由如下:
折叠得到,
垂直平分,
.
又,
,
.
又折叠得到,
,
,
,
为等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图所示,长方形纸片ABCD的长AD=9cm,宽AB=3cm,将其折叠,使点D与点B重合.
求:(1)折叠后DE的长;(2)以折痕EF为边的正方形面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,分别为,边上的高,连接,过点作与点,为中点,连接,.
(1)如图,若点与点重合,求证:;
(2)如图,请写出与之间的关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC 是等边三角形,D 为 CB 延长线上一点,E 为 BC 延长线上点.
(1)当 BD、BC 和 CE 满足什么条件时,△ADB∽△EAC?
(2)当△ADB∽△EAC 时,求∠DAE 的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中Rt△AOB≌Rt△DCA,其中B(0,4),C(2,0).连接BD.
(1)求直线BD的解析式;
(2)点E是直线AD上一点,连接BE,以BE,ED为一组邻边作BEDF,当BEDF的面积为3时,求点E的坐标;
(3)如图2,将△DAC沿x轴向左平移,平移距离大于0,记平移后的△DAC为△D′A′C′,连接D′A,D′B,当△D′AB为等腰三角形时,直接写出点D′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)求PE的长最大时m的值.
(3)Q是平面直角坐标系内一点,在(2)的情况下,以PQCD为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com