【题目】长凝大蒜产于榆次区长凝镇,种植历史悠久,清初曾被选为皇家贡品,在晋中以及省内外享有盛誉.秋天勤劳的农民们将大蒜编成串后进行销售.小乐通过网店推广家乡特产,销售大蒜.每串大蒜的成本是6元,销售一段时间后,发现当售价为每串25元时,平均每天能售出12串.小乐想让更多的人尝到长凝大蒜,因此进行了降价销售,经调查发现,每串大蒜每降价0.5元,平均每天多售出2串.若小乐既想保证平均每天获利420元,又想扩大销售量,那么每串大蒜应降价多少元?
科目:初中数学 来源: 题型:
【题目】如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC边上的F点处.已知折痕AE=10,且CE:CF=4:3,那么该矩形的周长为( )
A.48B.64C.92D.96
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为.
A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,,,设,.
(1)如图1,当点在内,
①若,求的度数;
小明同学通过分析已知条件发现:是顶角为的等腰三角形,且,从而容易联想到构造一个顶角为的等腰三角形.于是,他过点作,且,连接,发现两个不同的三角形全等:_____________再利用全等三角形及等腰三角形的相关知识可求出的度数
请利用小王同学分析的思路,通过计算求得的度数为_____;
②小王在①的基础上进一步进行探索,发现之间存在一种特殊的等量关系,请写出这个等量关系,并加以证明.
(2)如图2,点在外,那么之间的数量关系是否改变?若改变,请直接写出它们的数量关系;若不变,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形中,,与相切于点,、是正方形与圆的另两个交点.
(1)__________,圆心到直线的距离为__________;
(2)求的半径长和的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在13×13的网格图中,已知△ABC和点M(1,2).
(1)以点M为位似中心,画出△ABC的位似图形△A′B′C′,其中△A′B′C′与△ABC的位似比为2;
(2)写出△A′B′C′的各顶点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)与通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温y(℃)与通电时间x(min)的关系如下图所示,回答下列问题:
(1)当0≤x≤8时,求y与x之间的函数关系式;
(2)求出图中a的值;
(3)某天早上7:20,李老师将放满水后的饮水机电源打开,若他想在8:00上课前能喝到不超过40℃的温开水,问:他应在什么时间段内接水?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学活动课上,小明和小红要测量小河对岸大树BC的高度,小红在点A测得大树顶端B的仰角为45°,小明从A点出发沿斜坡走3米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为1:2.
(1)求小明从点A到点D的过程中,他上升的高度;
(2)依据他们测量的数据能否求出大树BC的高度?若能,请计算;若不能,请说明理由.(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com