分析 根据题意求出两个三角形的相似比,根据相似三角形的性质得到两个三角形的面积比,求出△ADE的面积,结合图形计算即可.
解答 解:∵$\frac{AD}{BD}$=$\frac{1}{2}$,
∴$\frac{AD}{AB}$=$\frac{1}{3}$,
∵△ADE∽△ABC,$\frac{AD}{AB}$=$\frac{1}{3}$,
∴△ADE与△ABC的面积比为$\frac{1}{9}$,又△ABC的面积为18,
∴△ADE的面积为2,
∴四边形BCED的面积=△ABC的面积-△ADE的面积=16.
点评 本题考查的是相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ($\sqrt{3}$)2=3 | B. | $\sqrt{(-3)^{2}}$=-3 | C. | (a5)2=a10 | D. | 2a2•(-3a3)=-6a5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com