精英家教网 > 初中数学 > 题目详情
15.如图,△ADE∽△ABC,$\frac{AD}{BD}$=$\frac{1}{2}$,△ABC的面积为18,求四边形BCED的面积.

分析 根据题意求出两个三角形的相似比,根据相似三角形的性质得到两个三角形的面积比,求出△ADE的面积,结合图形计算即可.

解答 解:∵$\frac{AD}{BD}$=$\frac{1}{2}$,
∴$\frac{AD}{AB}$=$\frac{1}{3}$,
∵△ADE∽△ABC,$\frac{AD}{AB}$=$\frac{1}{3}$,
∴△ADE与△ABC的面积比为$\frac{1}{9}$,又△ABC的面积为18,
∴△ADE的面积为2,
∴四边形BCED的面积=△ABC的面积-△ADE的面积=16.

点评 本题考查的是相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.在△ABC中,AC>AB,AD是BC边上的高,E是AD上任意一点,求证:AC2-AB2=CE2-BE2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.某校九年级有10个班,每班50名学生,为调查该校九年级学生一学期课外书籍的阅读情况,准备抽取50名学生作为一个样本进行分析,并规定如下:设一个学生一学期阅读课外书籍本书为n,当0≤n<5时为一般读者;当5≤n<10时为良好读者;当n≥10时为优秀读者.
(1)下列四种抽取方法最具有代表性的是B;
A.随机抽取一个班的学生     B.随机抽取50名学生
C.随机抽取50名男生        D.随机抽取50名女生
(2)由上述最具代表性的抽取方法抽取50名学生一学期阅读本数的数据如下:
8 10 6 9 7 16 8 11 0 13 10 5 8
2 6 9 7 5 7 6 4 12 10 11 6 8
14 15 7 12 13 8 9 7 10 12 11 8 13
10 4 6 8 13 6 5 7 11 12 9
根据以上数据回答下列问题
①求样本中优秀读者的频率;
②估计该校九年级优秀读者的人数;
③在样本为一般读者的学生中随机抽取2人,用树形图或列表法求抽得2人的课外书籍阅读本数都为4的概.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在中央电视台第2套《购物街》栏目中,有一个精彩刺激的游戏--幸运大转盘,其规则如下:
①游戏工具是一个可绕轴心自由转动的圆形转盘,转盘按圆心角均匀划分为20等分,并在其边缘标记5、10、
15、…、100共20个5的整数倍数,游戏时,选手可旋转转盘,待转盘停止时,指针所指的数即为本次游戏的得分;
②每个选手在旋转一次转盘后可视得分情况选择是否再旋转转盘一次,若只旋转一次,则以该次得分为本轮游戏的得分,若旋转两次则以两次得分之和为本轮游戏的得分;
③若某选手游戏得分超过100分,则称为“爆掉”,该选手本轮游戏裁定为“输”,在得分不超过100分的情况下,分数高者裁定为“赢”;
④遇到相同得分的情况,相同得分的选手重新游戏,直到分出输赢.
现有甲、乙两位选手进行游戏,请解答以下问题:
(1)甲已旋转转盘一次,得分65分,他选择再旋转一次,求他本轮游戏不被“爆掉”的概率.
(2)若甲一轮游戏最终得分为90分,乙第一次旋转转盘得分为85分,则乙还有可能赢吗?赢的概率是多少?
(3)若甲、乙两人交替进行游戏,现各旋转一次后甲得85分,乙得65分,你认为甲是否应选择旋转第二次?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.已知二次函数y=(x-1)2+2,当x>1时,y随x的增大而增大(填“减小”或“增大”).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知抛物线y=-2x2+4x+6.
(1)用配方法求该抛物线的顶点坐标;
(2)直接写出-2x2+4x+6>0时,x的取值范围是-1<x<3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,将半径为6的⊙O沿AB折叠,$\widehat{AB}$与AB垂直的半径OC交于点D且CD=2OD,则折痕AB的长为8$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列各式中,计算不正确的是(  )
A.($\sqrt{3}$)2=3B.$\sqrt{(-3)^{2}}$=-3C.(a52=a10D.2a2•(-3a3)=-6a5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,二次函数y=x2+bx+c的图象交x轴于A(-1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒$\sqrt{2}$个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.

(1)求二次函数的解析式; 
(2)如图1,当△BPQ为直角三角形时,求t的值;
(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上存在一点N,使得PQ的中点恰为MN的中点,请直接写出N点的坐标.

查看答案和解析>>

同步练习册答案