精英家教网 > 初中数学 > 题目详情
12.若一组数据5,-3,x,0,-1的极差是11,那么x的值为(  )
A.-6B.8C.16D.-6或8

分析 根据极差的公式:极差=最大值-最小值求解即可.

解答 解:当x是最大数时,x-(-3)=11,解得:x=8;
当x是最小数时,5-x=11,解得:x=-6,
故选D.

点评 本题考查了极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,在平面直角坐标系中,点A的坐标(x1,0),点B的坐标(x2,0),已知实数x1,x2(x1<x2)分别是方程x2+2x-3=0的两根,OA=OC,抛物线经过A、B、C三点,记抛物线顶点为点E.
(1)求抛物线的解析式;
(2)若点P为线段AC上的一个动点(不与A、C重合),直线PB与抛物线交于点D,连接DA,DC.
①计算△ACE的面积;
②是否存在点D,使得S△ADC=$\frac{1}{2}$S△ACE?若存在,求出点D的坐标;若不存在,请说明理由;
(3)在(2)的条件下,当△PBC为等腰三角形时,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解方程:
(1)$\frac{1}{x-2}$=$\frac{1-x}{2-x}$-3
(2)$\frac{2}{{x}^{2}-4}$+$\frac{x}{x-2}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部B处的高BC为8m,A、C在同一水平地面上.
(1)求斜坡的水平宽度AC;
(2)矩形DEFG为长方体货柜的侧面图,其中DE=4m,EF=5m,将该货柜沿斜坡向上运送,当AE=7m时,求点G到地面的垂直高度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.关于x的方程(m+1)x|m|+3=0是一元一次方程,那么x的值等于-$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.(1)先化简,再求值:($\frac{1}{x-1}$-x+1)÷$\frac{2x-4}{1-x}$,其中x=$\frac{3}{2}$
(2)解分式方程:$\frac{28}{\frac{4}{3}x}$-$\frac{15.6}{x}$=6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
(1)-24+3×(-1)2016+100÷(-5)2
(2)$\frac{2}{3}$xy-$\frac{5}{4}$x2y2-$\frac{1}{3}$xy2+$\frac{3}{4}$xy-$\frac{2}{3}$xy2
(3)4y2-[3y-(3-2y)+2y2]-2
(4)$\frac{2}{3}$xy-$\frac{5}{4}$x2y2-$\frac{1}{3}$xy2+$\frac{3}{4}$xy-$\frac{2}{3}$xy2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.我们知道,无限循环小数都可以转化为分数.例如,将0.3转化为分数时,可设x=0.$\stackrel{•}{3}$,则10x=3.$\stackrel{•}{3}$=3+0.$\stackrel{•}{3}$,所以10x=3+x,解得x=$\frac{1}{3}$即0.$\stackrel{•}{3}$=$\frac{1}{3}$.仿此方法,将0.$\stackrel{•}{4}\stackrel{•}{5}$化为分数是$\frac{5}{11}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.(1)先化简,再求值:2(a2b-ab2)-3(a2b-1)+2ab2+1,其中a=1,b=2
(2)$\frac{y+1}{4}-1$=$\frac{2y+1}{6}$.

查看答案和解析>>

同步练习册答案