精英家教网 > 初中数学 > 题目详情

【题目】如图,设在一个宽度为w的小巷内,一个梯子长为a,梯子的脚位于A点,将梯子的顶端放在一堵墙上Q点时,Q离开地面的高度为k,梯子与地面的夹角为45°:将该梯子的顶端放在另一堵墙上R点时,R点离开地面的高度为h,且此时梯子与地面的夹角为75°,则小巷宽度w=

A.hB.kC.aD.

【答案】A

【解析】

连接QR,过QQDPR,则可证AQR为等边三角形,得QR=AQ,进而求证DQR≌△PRA,可得QD=RP,即墙面之间距离w=h

解:连接QR,过QQDPR

Q离开地面的高度为k,梯子与地面的夹角为45°

∴∠AQD=45°

又∵R点离开地面的高度为h,且此时梯子与地面的夹角为75°

∴∠QAR=180°-75°-45°=60°,且AQ=AR

∴△AQR为等边三角形,

AQ=QR=AR

∵∠AQD=45°

∴∠RQD=60°-45°=15°

ARP=90°-RAP=90°-75°=15°,

∴∠RQD=ARP

又∵∠QDR=P=90°,AR=QR

∴△DQR≌△PRA

QD=PR,即w=h

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过B点,且顶点在直线y=上.

(1)求抛物线对应的函数关系式;

(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由.

(3)(2)的条件下,若M点是CD所在直线下方该抛物线上的一个动点,过点MMN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为s,求st之间的函数关系式,写出自变量t的取值范围,并求s取大值时,点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,ACBD相交于点O,点EOA的中点,连接BE并延长交AD于点F,已知SAEF=4,则下列结论:①SBCE=36;SABE=12;④△AEFACD,其中一定正确的是(  )

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过边长为2的等边的边上一点,作于点,点延长线上一点,当时,连接边于点,则的长为(

A.1B.2C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,A=90°OBC边上一点,以O为圆心的半圆与AB边相切于点D,与ACBC边分别交于点EFG,连接OD,已知BD=2AE=3tanBOD=

1)求O的半径OD

2)求证:AEO的切线;

3)求图中两部分阴影面积的和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,平面直角坐标系中,直线 y1=x+3与抛物线y2=﹣+2x 的图象如图,点P是 y2 上的一个动点,则点P到直线 y1 的最短距离为()

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为 B,且抛物线不过第三象限.

(1)过点B作直线l垂直于x轴于点C,若点C坐标为(2,0),a=1,求b和c的值;

(2)比较与0的大小,并说明理由;

(3)若直线y2=2x+m经过点B,且与抛物线交于另外一点D(,b+8),求当≤x<5时y1的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】教科书中这样写道:“我们把多项式叫做完全平方式,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项使式子中出现完全平方式,再减去这个项,使整个式子的值不变这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求化数式最大值.最小值等.

例如:分解因式

;例如求代数式的最小值..可知当时,有最小值,最小值是,根据阅读材料用配方法解决下列问题:

1)分解因式: _____

2)当为何值时,多项式有最小值,并求出这个最小值.

3)当为何值时.多项式有最小值并求出这个最小值

查看答案和解析>>

同步练习册答案