精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,A=90°OBC边上一点,以O为圆心的半圆与AB边相切于点D,与ACBC边分别交于点EFG,连接OD,已知BD=2AE=3tanBOD=

1)求O的半径OD

2)求证:AEO的切线;

3)求图中两部分阴影面积的和.

【答案】解:(1AB与圆O相切,ODAB

RtBDO中,BD=2

OD=3

2)连接OE

AE=OD=3AEOD四边形AEOD为平行四边形。

ADEO

DAAEOEAC

OE为圆的半径,AC为圆O的切线。

3ODAC∴△DBOABC

,即AC=EC=AC﹣AE=﹣3=

易得四边形ADOE是正方形,∴∠DOE=90°∴∠FOD+EOG=90°

S阴影=SBDO+SOEC﹣S扇形BOD﹣S扇形EOG=×2×3+×3×

【解析】

试题1)由AB为圆O的切线,利用切线的性质得到OD垂直于AB,在直角三角形BDO中,利用锐角三角函数定义,根据tanBODBD的值,求出OD的值即可

2)连接OE,由AE=OD=3,且ODAE平行,利用一组对边平行且相等的四边形为平行四边形,根据平行四边形的对边平行得到OEAD平行,再由DAAE垂直得到OEAC垂直,即可得证

3)阴影部分的面积由三角形BOD的面积+三角形ECO的面积扇形DOF的面积扇形EOG的面积,求出即可

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,二次函数的图象交坐标轴于 A(﹣10),B40),C

0,﹣4)三点,点 P 是直线 BC 下方抛物线上一动点.

1 求这个二次函数的解析式;

2 是否存在点 P,使POC 是以 OC 为底边的等腰三角形?若存在,求出 P 点坐标;若不存在,请说明理由;

3 在抛物线上是否存在点 D(与点 A 不重合)使得 SDBCSABC,若存在,求出点 D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小方格都是边长为1的正方形,ABC的顶点都在格点上,请完成下列任务:

(1)将ABC绕点C按顺时针方向旋转90°后得到A1B1C;

(2)求线段AC旋转到A1C的过程中,所扫过的图形的面积;

(3)以点O为位似中心,位似比为2,将A1B1C放大得到A2B2C2(在网格之内画图).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a0),经过点A和x轴正半轴上的点B,AO=OB=2,AOB=120°.

(1)求这条抛物线的表达式;

(2)连接OM,求AOM的大小;

(3)如果点C在x轴上,且ABC与AOM相似,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,设在一个宽度为w的小巷内,一个梯子长为a,梯子的脚位于A点,将梯子的顶端放在一堵墙上Q点时,Q离开地面的高度为k,梯子与地面的夹角为45°:将该梯子的顶端放在另一堵墙上R点时,R点离开地面的高度为h,且此时梯子与地面的夹角为75°,则小巷宽度w=

A.hB.kC.aD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了响应足球进校国的目标,兴义市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度hm)可以用公式h=﹣5t2+v0t表示,其中ts)表示足球被踢出后经过的时间,v0m/s)是足球被踢出时的速度,如果要求足球的最大高度达到20m,那么足球被踢出时的速度应该达到(  )

A. 5m/s B. 10m/s C. 20m/s D. 40m/s

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1中,,且

1)试说明是等腰三角形;

2)已知,如图2,动点从点出发以每秒的速度沿线段向点运动,同时动点从点出发以相同速度沿线段向点运动,设点运动的时间为(秒)

①若的边于平行,求的值;

②若点是边的中点,问在点运动的过程中,能否成为等腰三角形?若能,求出的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y1=ax+223y2=x32+1交于点A13),过点Ax轴的平行线,分别交两条抛物线于点BC.则以下结论:

①无论x取何值,y2的值总是正数;

a=1

③当x=0时,y2﹣y1=4

2AB=3AC

其中正确结论是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k0)的图象交于A(﹣1,a),B两点,与x轴交于点C.

(1)求此反比例函数的表达式;

(2)若点P在x轴上,且SACP=SBOC,求点P的坐标.

查看答案和解析>>

同步练习册答案