精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC是等边三角形,ABD是等腰直角三角形,∠BAD90°AEBD与点E,连CD分别交AEAB于点FG,过点AAHCDBD于点H,则下列结论:①∠ADC15°;②AFAG;③ADF≌△BAH;④ DF2EH,其中正确结论的个数为(

A.4B.3C.2D.1

【答案】B

【解析】

①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD150°,据此可判断;②求出∠AFP和∠FAG度数,从而得出∠AGF度数,据此可判断;③根据ASA证明△ADF≌△BAH即可判断③④正确;⑤由∠BAE45°,∠ADC=∠BAH15°,则∠EAH30°,DF2EH即可得出.

∵△ABC为等边三角形,△ABD为等腰直角三角形,

∴∠BAC60°、∠BAD90°、ACABAD,∠ADB=∠ABD45°,

∴△CAD是等腰三角形,且顶角∠CAD150°,

∴∠ADC15°,故①正确;

AEBD,即∠AED90°,

∴∠DAE45°,

∴∠AFG=∠ADC+∠DAE60°,∠FAG45°,

∴∠AGF75°,

由∠AFG≠∠AGFAFAG,故②错误;

AHCD的交点为P

AHCD且∠AFG60°知∠FAP30°,

则∠BAH=∠ADC15°,

在△ADF和△BAH中,

∴△ADF≌△BAHASA),

DFAH,故③④正确;

∵∠ABE=∠EAB45°,∠ADF=∠BAH15°,

∴∠EAH=∠EABBAH45°15°=30°,

AH2EH

DF2EH

故⑤正确.

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】高尔夫球手基础的高尔夫球的运动路线是一条抛物线,当球水平运动了时达到最高点.落球点比击球点的海拔低,水平距离为

建立适当的坐标系,求高度关于水平距离的二次函数式;

与击球点相比,运动到最高点时有多高?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】商场某种商品平均每天可销售30件,每件盈利50元。为了尽快减少库存,商场决定采取适当的降价措施。经调查发现,每件商品每降价1元,商场平均每天可多售出2件。设每件商品降价元。据此规律,请回答:

(1)商场日销售量增加_____件,每件商品盈利_____元(用含的代数式表示)。

(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣2x2+5x﹣2.

(1)写出该函数的对称轴,顶点坐标;

(2)求该函数与坐标轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点关于x轴的对称点和点关于y轴的对称点相同,则点关于x轴对称的点的坐标为( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】绿水青山就是金山银山的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.

(1)求该型号自行车的进价和标价分别是多少元?

(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A(a,b)是抛物线上一动点,OBOA交抛物线于点B(c,d).当点A在抛物线上运动的过程中(点A不与坐标原点O重合),以下结论:①ac为定值;②ac=﹣bd;③△AOB的面积为定值;④直线AB必过一定点.正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若二次函数y=﹣x2+4x+c的图象经过A(1,y1),B(﹣1,y2),C(2+ ,y3)三点,则y1、y2、y3的大小关系是(

A. y1<y2<y3 B. y1<y3<y2 C. y2<y3<y1 D. y2<y1<y3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 (1)如图1,等腰RtABC中,∠CAB=90°,点HBC边上,连AH,作等腰RtHFA,∠HFA=90°求证:AF=CF.

(2)如图2,等腰RtABC中,∠CAB=90°DBC上,ADAE,AD=AE,GCD中点,求证:AGBE

(3)如图3,等腰RtABC中,∠BAC=90°,过CCDAB, CD=8,连AD,AD上取一点E使AE=AB,连BEACF,若AF=9,则AD= .

查看答案和解析>>

同步练习册答案