精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的方程x22x+m10

1)若方程有两个不相等的实数根,求m的取值范围;

2)若方程有一个实数根是5,求m的值及此时方程的另一个根.

【答案】1m2;(2m=﹣14,另一个根为﹣3

【解析】

1)根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;
2)代入x=5可求出m的值,再利用两根之和等于-,即可求出方程的另一个根.

1)∵关于x的方程x22x+m10有两个不相等的实数根,

∴△=(﹣224×1×m1)>0

解得:m2

m的取值范围为m2

2)当x5时,原方程为522×5+m10

解得:m=﹣14

∵方程x22x+m10的一个实数根为5

∴另一个根为25=﹣3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】豆豆同学上周末对万州西山钟楼(AB)的高度进行了测量.如图,他站在点 D 处测得西山钟楼顶部点 A 的仰角为 67°.然后他从点 D 沿着坡度为 i=1:的斜坡 DF 方向走 20 米到达点 F,此时测得建筑物顶部点 A 的仰角为 45°.已知该同学的视线距地面高度为 1.6 米(即 CDEF1.6 米),图 中所有的点均在同一平面内,点 BDG 在同一条直线上,点 EFG 在同一条直线上,ABCDEF 均垂直于 BG.则西山钟楼 AB 的高约为( )(参考数据:sin67°≈0.92cos67°≈0.39tan67°≈2.36

A.17.4 B.36.8 C.48.8 D.50.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABBCCD分别与⊙O切于EFG,且ABCD.连接OBOC,延长CO交⊙O于点M,过点MMNOBCDN

1)求证:MN是⊙O的切线;

2)当OB6cmOC8cm时,求⊙O的半径及MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在“双11”期间,新华商场销售某种冰箱,每台进价为3000元,调查发现,当销售价为3600元时,平均每天能售出16台,而当销售价每降低50元时,平均每天就能多售出4. 假设每台冰箱降价元(x50的整数倍,0<x<600.

1直接写出平均每天商场销售冰箱的数量y(台)与x(元)之间的关系;

2要想这种冰箱的销售利润平均每天达到12800元,每台冰箱的定价应为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,O是矩形ABCD的对角线的交点,作DECE相交于点E.求证:

1)四边形OCED是菱形;

2)连接OE.若,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx4aa≠0)经过A(﹣10)、C04)两点,与x轴交于另一点B,连接ACBC

1)求抛物线的解析式;

2)过点Cx轴的平行线交抛物线于另一点D,连接BD,点P为抛物线上一点,且∠DBP45°,求点P的坐标;

3)在抛物线的对称轴上是否存在点M,使得由点MAC构成的MAC是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会.某公司研发生产一种新型智能环保节能灯,成本为每件40元.市场调查发现,该智能环保节能灯每件售价y(元)与每天的销售量为x(件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元.

1)求每件销售单价y(元)与每天的销售量为x(件)的函数关系式并直接写出自变量x的取值范围;

2)设该公司日销售利润为P元,求每天的最大销售利润是多少元?

3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家给予公司补贴mm≤40)元.在获得国家每件m元补贴后,公司的日销售利润随日销售量的增大而增大,则m的取值范围是   (直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB8cmBC6cm,点P从点A出发,沿AB边向点B以每秒2cm的速度移动,同时点Q从点D出发沿DA边向点A以每秒1cm的速度移动,PQ其中一点到达终点时,另一点随之停止运动.设运动时间为t秒.回答下列问题:

(1)如图,几秒后△APQ的面积等于5cm2

(2)如图,若以点P为圆心,PQ为半径作⊙P.在运动过程中,是否存在t值,使得点C落在⊙P上?若存在,求出t的值;若不存在,请说明理由.

(3)如图,若以Q为圆心,DQ为半径作⊙Q,当⊙QAC相切时

t的值.

如图,若点E是此时⊙Q上一动点,FBE的中点,请直接写出CF的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,如果AD=2cm,DB=1cm,AE=1.8cm,则EC=(  )

A. 0.9cm B. 1cm C. 3.6cm D. 0.2cm

【答案】A

【解析】试题分析:根据平行线分线段成比例定理得到=,然后利用比例性质求EC的长.

解:∵DE∥BC

=,即=

∴EC=0.9cm).

故选A

考点:平行线分线段成比例.

型】单选题
束】
6

【题目】C是线段AB的黄金分割点(AC>BC,AB=10cm,则AC等于(

A. 6 cm B. cm C. cm D. cm

查看答案和解析>>

同步练习册答案