【题目】如图①,△ABC为等腰直角三角形, △ABD为等边三角形,连接CD.
(1)求∠ACD的度数;
(2)如图①,作∠BAC的平分线交CD于点E,求证:DE=AE+CE;
(3)如图②,在(2)的条件下,M为线段BC右侧一点,满足∠CMB=60°,求证:ME平分∠CMB.
【答案】(1)15°;(2)见解析;(3)见解析.
【解析】
(1)由题意可得∠BAC=90°,AB=AC,∠BAD=60°,AB=AD,于是可证得∠CAD=150°,AC=AD,故可求∠ACD的度数;
(2)在ED截取EF=AE,连接AF,证明△AEF为等边三角形,再证△ADF△AEC,即可得出结论;
(3)连接EB,作EG⊥BM于点G,EH⊥MC交MC的延长线于点H.证明△ABE△AEC和△BEG△HEC,于是可得EG=EH,根据角平分线的判定定理即可证明ME平分∠CMB.
解:(1)如图①,
∵△ABC为等腰直角三角形,
∴∠BAC=90°,AB=AC,
∵△ABD为等边三角形,
∴∠BAD=60°,AB=AD,
∴∠CAD=150°,AC=AD,
∴∠ACD==15°,
(2)在ED截取EF=AE,连接AF,
∵AE平分∠BAC,∠BAC=90°,
∴∠EAC=45°,
∵∠ACD=15°,
∴∠DEA=45°+15°=60°,
∵EF=AE,
∴△AEF为等边三角形,
∴AF=AE,∠FAE=60°,
∴∠FAD=150°-60°-45°=45°,
∴∠FAD=∠EAC,
在△ADF和△AEC中
,
∴△ADF△AEC,
∴DF=CE,
∴DE=DF+EF=CE+AE,
(3)连接EB,作EG⊥BM于点G,EH⊥MC交MC的延长线于点H,
由(1)(2)可知在△ABE和△AEC中,
∴△ABE△AEC,
∴BE=CE,∠AEB=∠AEC=120°,
∴∠BEC=360°-120°-120°=120°,
∵在四边形GEHM中,∠CMB=60°,EG⊥BM,EH⊥MC,
∴∠GEH=360°-60°-90°-90°=120°,
∴∠GEH=∠BEC,
∴∠CEH=∠BEG,
在△BEG和△HEC中,
∴△BEG△HEC,
∴EG=EH,
∴EM平分∠CMB.
科目:初中数学 来源: 题型:
【题目】黄岩岛自古以来就是中国的领土,如图,为维护海洋利益,三沙市一艘海监船在黄岩岛附近海域巡航,某一时刻海监船在A处测得该岛上某一目标C在它的北偏东45°方向,海监船沿北偏西30°方向航行60海里后到达B处,此时测得该目标C在它的南偏东75方向,求此时该船与目标C之间的距离CB的长度,(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图, AB是⊙O的直径,AM和BN是⊙O的两条切线,点D是AM上一点,联结OD , 作BE∥OD交⊙O于点E, 联结DE并延长交BN于点C.
(1)求证:DC是⊙O的切线;
(2)若AD=l,BC=4,求直径AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,已知AD⊥BC,∠B=64°,∠C=56°,
(1)求∠BAD和∠DAC的度数;
(2)若DE平分∠ADB,求∠AED的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C为线段AE上一动点(不与A.E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,一定成立的有________(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=x2﹣6x+5的图象交x轴于A、B两点,交y轴于点C,连接BC.
(1)直接写出点B、C的坐标,B ;C .
(2)点P是y轴右侧拋物线上的一点,连接PB、PC.若△PBC的面积15,求点P的坐标.
(3)设E为线段BC上一点(不含端点),连接AE,一动点M从点A出发,沿线段AE以每秒一个单位速度运动到E点,再沿线段EC以每秒2个单位的速度运动到C后停止,当点E的坐标是 时,点M在整个运动中用时最少,最少用时是 秒.
(4)若点Q在y轴上,当∠AQB取得最大值时,直接写出点Q的坐标 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(3分)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在世界经济的影响下,国家采取扩大内需的政策,基建投资成为拉动内需最强有力的引擎,金强公司中标一项工程,在甲、乙两地施工,其中甲地需推土机30台,乙地需推土机26台,公司在A、B两地分别库存推土机32台和24台,现从A地运一台到甲、乙两地的费用分别是400元和300元.从B地运一台到甲、乙两地的费用分别为200元和500元,设从A地运往甲地x台推土机,运这批推土机的总费用为y元.
(1)根据题意,可将库存地和施工地之间推土机的运输数量列表如下:
甲地(台) | 乙地(台) | 合计 | |
A地 | x | A地库存:32 (台) | |
B地 | B地库存:24 (台) | ||
合计 | 甲地需求:30 (台) | 乙地需求:26 (台) | 总计:56 (台) |
(2)求y与x的函数关系式;
(3)当x取何值时,能使运送这批推土机的总费用最少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A(0,m)、C(n,0),B(﹣5,0),且,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.
(1)求A、C两点的坐标;
(2)连接PA,用含t的代数式表示△POA的面积;
(3)当P在线段BO上运动时,是否存在一点P,使△PAC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com