【题目】如图,线段AB,A(2,3),B(5,3),抛物线y=﹣(x﹣1)2﹣m2+2m+1与x轴的两个交点分别为C,D(点C在点D的左侧)
(1)求m为何值时抛物线过原点,并求出此时抛物线的解析式及对称轴和项点坐标.
(2)设抛物线的顶点为P,m为何值时△PCD的面积最大,最大面积是多少.
(3)将线段AB沿y轴向下平移n个单位,求当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分.
【答案】(1)当m=0或m=2时,抛物线过原点,此时抛物线的解析式是y=﹣(x﹣1)2+1,对称轴为直线x=1,顶点为(1,1);(2)m为1时△PCD的面积最大,最大面积是2;(3)n=m2﹣2m+6或n=m2﹣2m+11.
【解析】
(1)根据抛物线过原点和题目中的函数解析式可以求得m的值,并求出此时抛物线的解析式及对称轴和项点坐标;
(2)根据题目中的函数解析式和二次函数的性质,可以求得m为何值时△PCD的面积最大,求得点C、D的坐标,由此求出△PCD的面积最大值;
(3)根据题意抛物线能把线段AB分成1:2,存在两种情况,求出两种情况下线段AB与抛物线的交点,即可得到当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分.
(1)当y=﹣(x﹣1)2﹣m2+2m+1过原点(0,0)时,0=﹣1﹣m2+2m+1,得m1=0,m2=2,
当m1=0时,y=﹣(x﹣1)2+1,
当m2=2时,y=﹣(x﹣1)2+1,
由上可得,当m=0或m=2时,抛物线过原点,此时抛物线的解析式是y=﹣(x﹣1)2+1,对称轴为直线x=1,顶点为(1,1);
(2)∵抛物线y=﹣(x﹣1)2﹣m2+2m+1,
∴该抛物线的顶点P为(1,﹣m2+2m+1),
当﹣m2+2m+1最大时,△PCD的面积最大,
∵﹣m2+2m+1=﹣(m﹣1)2+2,
∴当m=1时,﹣m2+2m+1最大为2,
∴y=﹣(x﹣1)2+2,
当y=0时,0=﹣(x﹣1)2+2,得x1=1+,x2=1﹣,
∴点C的坐标为(1﹣,0),点D的坐标为(1+,0)
∴CD=(1+)﹣(1﹣)=2,
∴S△PCD==2,
即m为1时△PCD的面积最大,最大面积是2;
(3)将线段AB沿y轴向下平移n个单位A(2,3﹣n),B(5,3﹣n)
当线段AB分成1:2两部分,则点(3,3﹣n)或(4,3﹣n)在该抛物线解析式上,
把(3,3﹣n)代入抛物线解析式得,
3﹣n=﹣(3﹣1)2﹣m2+3m+1,
得n=m2﹣2m+6;
把(4,3﹣n)代入抛物线解析式,得
3﹣n=﹣(3﹣1)2﹣m2+3m+1,
得n=m2﹣2m+11;
∴n=m2﹣2m+6或n=m2﹣2m+11.
科目:初中数学 来源: 题型:
【题目】上周六上午点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离(千米)与他们路途所用的时间(时)之间的函数图象,请根据以上信息,解答下列问题:
(1)求直线所对应的函数关系式;
(2)已知小颖一家出服务区后,行驶分钟时,距姥姥家还有千米,问小颖一家当天几点到达姥姥家?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年5月5日,中国邮政发行《马克思诞辰200周年》纪念邮票1套2枚(如图),这套邮票正面图案为:马克思像、马克思与恩格斯像,背面完全相同.发行当日,小宇购买了此款纪念邮票2套,他将2套邮票沿中间虚线撕开(使4枚形状、大小完全相同)后将4枚纪念邮票背面朝上放在桌面上,并随机从中抽出2张,则抽出的2张邮票恰好都是“马克思像”的概率为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场用两个月时间试销某种新型商品,经市场调查,该商品的第天的进价(元/件)与(天)之间的相关信息如下表:
时间(天) | ||
进价(元/件) | 40 |
该商品在销售过程中,销售量(件)与(天)之间的函数关系如图所示:
在销售过程中,商场每天销售的该产品以每件80元的价格全部售出.
(1)求该商品的销售量(件)与(天)之间的函数关系;
(2)设第天该商场销售该商品获得的利润为元,求出与之间的函数关系式,并求出第几天销售利润最大,最大利润是多少元?
(3)在销售过程中,当天的销售利润不低于2400元的共有多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为弘扬中华优秀传统文化,某校组织了“古诗词”知识竞赛,由九年级的若干名学生参加选拔赛,从中选出10名优胜者,下面是对参赛学生成绩的不完整统计.
(1)统计表中,=_____;各组人数的中位数是_____;统计图中,组所在扇形的圆心角是_____°;
(2)李明同学得了88分,他说自己在参加选拔赛的同学中属于中午偏上水平,你认为他说的有道理吗?为什么?
(3)选出的10名优胜者中,男生、女生的分布情况如下表.
一班 | 二班 | 三班 | 四班 | 五班 | 六班 | |
男生人数 | 1 | 1 | 2 | 1 | 0 | 0 |
女生人数 | 1 | 0 | 0 | 2 | 1 | 1 |
若从中任选1名男生和1名女生代表学校参加全区的比赛,请有列表法或画树状图法求男生和女生都出在四班的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).
(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;
(2)计算点P在函数y=图象上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的图像过点,顶点为
求的值.
点以点为旋转中心,顺时针旋转得到点,判断点是否落在抛物线上.
第一象限内抛物线上有一点与相交于点,当时,求点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).
(1)求抛物线的解析式;
(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;
(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘轮船以每小时40海里的速度在海面上航行,当该轮船行驶到B处时,发现灯塔C在它的东北方向,轮船继续向北航行,30分钟后到达A处,此时发现灯塔C在它的北偏东75°方向上,求此时轮船与灯塔C的距离.(结果保留根号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com