精英家教网 > 初中数学 > 题目详情

【题目】问题提出:求n个相同的长方体(相邻面的面积不相同)摆放成一个大长方体的表面积.

问题探究:探究一:

为了研究这个问题,同学们建立了如下的空间直角坐标系:空间任意选定一点O,以点O为端点,作三条互相垂直的射线oxoyoz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为ox(水平向前)、oy(水平向右)、oz(竖直向上)方向.

将相邻三个面的面积记为S1S2S3,且S1S2S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y轴垂直,S3所在的面与z轴垂直,如图1所示.

若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标系内码放的一个几何体,其中这个几何体共码放了126层,用有序数组记作(126),如图3的几何体码放了234层,用有序数组记作(234).这样我们就可用每一个有序数组(xyz)表示一种几何体的码放方式.

问题一:如图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为______

组成这个几何体的单位长方体的个数为______个.

探究二:

为了探究有序数组(xyz)的几何体的表面积公式Sxyz,同学们针对若干个单位长方体进行码

放,制作了下列表格

几何体

有序数组

单位长方体的个数

表面上面积为S1的个数

表面上面积为S2的个数

表面上面积为S3的个数

表面积

111

1

2

2

2

2S1+2S2+2S3

121

2

4

2

4

4S1+2S2+4S3

311

3

2

6

6

2S1+6S2+6S3

212

4

4

8

4

4S1+8S2+4S3

151

5

10

2

10

10S1+2S2+10S3

123

6

……

……

……

……

……

……

问题二:请将上面表格补充完整:当单位长方体的个数是6时,表面上面积为S1的个数是______

表面上面积为S2的个数是______;表面上面积为S3的个数是______;表面积为______

问题三:根据以上规律,请写出有序数组(xyz)的几何体表面积计算公式Sxyz=______(用xyzS1S2S3表示)

探究三:

同学们研究了当S1=2S2=3S3=4时,用3个单位长方体码放的几何体中,有三种码放的方法,有序数组分别为(113),(131),(311).而S113=38S131=42S311=46.容易发现个数相同的长方体,由于码放的方法不同,组成的几何体的表面积就不同.

拓展应用:

要将由20个相同的长方体码放的几何体进行打包,其中每个长方体的长是8,宽是5,高是6.为了节约外包装材料,请直接写出使几何体表面积最小的有序数组,并写出这个最小面积(不需要写解答过程).(缝隙不计)

【答案】1)(123),6;(2126412S1+6S2+4S3;(32yzS1+2xzS2+2xyS3拓展应用:几何体表面积最小的有序数组为(225),最小面积为S225=1786

【解析】

1)根据题中所给的标示法和图4中主视图知,摆放的长方体共有两列三层,由左视图知长方体共一排,则这种码放方式的有序数组为(123);组成这个几何体的单位长方体的个数为6个;

2)几何体有序数组(123)时,表示几何体码放了123层,单位长方体的个数为6个,表面上面积为S1的个数为12个,表面上面积为S2的个数6个,表面上面积为S3的个数4个,表面积为:12S1+6S2+4S3

3)根据题意可知当有序数组(xyz)时,根据长方体的面积公式知,表面上面积为S1的个数为2yz个,表面上面积为S2的个数2xz个,表面上面积为S3的个数2xy个,该几何体表面积计算公式Sxyz=2yzS1+2xzS2+2xyS3

4)拓展应用:由题目中所给出的S1=2S2=3S3=4时,Sxyz=2yzS1+xzS2+xyS3=22yz+3xz+4xy),分析出要使Sxyz的值最小,应满足x≤y≤zxyz为正整数),然后按条件将20分为:20=1×1×2020=1×2×1020=1×4×520=2×2×5四种形式,从面得出S225的值最小值为1786

解:(1)根据如图4中主视图知,摆放的长方体共有两列三层,由左视图知长方体共一排,根据题中所给的标示法,则这种码放方式的有序数组为(123);

组成这个几何体的单位长方体的个数为1×2×3=6(个)

故答案 123),6

2)由题意知,当几何体有序数组(123)时,表示几何体码放了123层,单位长方体的个数为6

∴表面上面积为S1的个数为12个,表面上面积为S2的个数6个,表面上面积为S3的个数4个,表面积为:12S1+6S2+4S3

故答案为:126412S1+6S2+4S3

3)当有序数组(xyz)时,

表面上面积为S1的个数为2yz个,表面上面积为S2的个数2xz个,表面上面积为S3的个数2xy个,

∴该几何体表面积计算公式Sxyz=2yzS1+2xzS2+2xyS3

故答案2yzS1+2xzS2+2xyS3

拓展应用:

S1=2S2=3S3=4时,Sxyz=2yzS1+xzS2+xyS3=22yz+3xz+4xy

要使Sxyz的值最小,不难看出xyz应满足x≤y≤zxyz为正整数)

∵将相邻三个面的面积记为S1S2S3,且S1S2S3,其中每个长方体的长是8,宽是5,高是6

S1=30S2=40S3=48

∴满足要求的组合有(1120),(1210),(145),(225

S1120=2×30×20+2×40×20+2×48=2896

S1210=2×30×2×10+2×40×10+2×48×2=2192

S145=2×30×4×5+2×40×5+2×48×4=1984

S225=2×30×2×5+2×40×2×5+2×48×4=1786

S225的值最小

∴几何体表面积最小的有序数组为(225),最小面积为S225=1786

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】两位同学在足球场上游戏,两人的运动路线如图1所示,其中AC=DB,小王从点A出发沿线段AB运动到点B,小林从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示,结合图象分析,下列说法正确的是( )

A. 小王的运动路程比小林的长

B. 两人分别在秒和秒的时刻相遇

C. 当小王运动到点D的时候,小林已经过了点D

D. 秒时,两人的距离正好等于的半径

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ABC=90°,BA=BC.点DAB的中点,连结CD,过点BBGCD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:①②点FGE的中点;③AF=AB;SABC=5SBDF,其中正确的结论序号是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】厨师将一定质量的面团做成粗细一致的拉面时,面条的总长度y(m)与面条横截面积x(mm2)之间成反比例函数关系.其图象经过A(432)B(t80)两点.

(1)yx之间的函数表达式;

(2)t的值,并解释t的实际意义;

(3)如果厨师做出的面条横截面面积不超过3.2mm2,那么面条的总长度至少为_____m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬中华优秀传统文化,某校开展经典诵读比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母ABC表示这三个材料),将ABC分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时甲同学先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由乙同学从中随机抽取一张卡片,甲、乙两同学按各自抽取的内容进行诵读比赛.

请用列表或画树状图的方法求甲、乙两同学诵读两个不同材料的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y/千克,y关于x的函数解析式为 且第12天的售价为32/千克,第26天的售价为25/千克.已知种植销售蓝莓的成木是18/千克,每天的利润是W元(利润=销售收入﹣成本).

(1)m=   ,n=   

(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?

(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=BC=2,∠ABC=90°,以AB为直径的⊙OOC于点DAD的延长线交BC于点E,则BE的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是直角三角形,分别是的中点,延长,使.

1)证明:四边形是平行四边形;

2)若四边形是菱形,则应为多少度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)

(1)若已知CD=20米,求建筑物BC的高度;

(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.

查看答案和解析>>

同步练习册答案