精英家教网 > 初中数学 > 题目详情

【题目】夫子庙派出所巡警骑摩托车在东西大道上巡逻,某天他从岗亭出发,晚上停留在处,规定向东方向为正,当天行驶记录如下(单位:千米):.

1)该巡警巡逻时离岗亭最远是多少千米.

2)若摩托车每行千米耗油升,那么该摩托车这天巡逻共耗油多少升?

【答案】1)最远是11千米;(23.96

【解析】

1)求出各个位置离出发点的距离,比较即可;

2)求出各数据绝对值之和,乘以0.05即可得到结果.

解:(1)∵+11千米,11-9=2千米,2+7=9千米,9-14=-5千米,-5+8=3千米,3-13=-10千米,-10+4=-6千米,

∴每次离开出发点的距离是:+11千米, 2千米, 9千米,5千米, 3千米, 10千米, 6千米,

∴最远是11千米;

2)该巡警巡逻时,共行驶了11+9+7+14+8+13+4=66千米,

若摩托车每行1千米耗油0.06升,那么该摩托车这天巡逻共耗油66×0.06=3.96升.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】生活与数学

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

(1)姆同学在某月的日历上圈出2×2个数,正方形的方框内的四个数的和是48,那么这四个数是_______.

(2)丽也在上面的日历上圈出2×2个数,斜框内的四个数的和是46,则它们分别是_____.

(3)莉也在日历上圈出5个数,呈十字框形,它们的和是55,则中间的数是______.

(4)某月有5个星期日的和是75,则这个月中最后一个星期日是______号?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读理解)

ABC为数轴上三点,如果点CAB之间且到A的距离是点CB的距离3倍,那么我们就称点C{AB}的奇点.

例如,如图1,点A表示的数为﹣3,点B示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C{AB}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{AB}的奇点,但点D{BA}的奇点.

(知识运用)

如图2MN为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5

1)数     所表示的点是{MN}的奇点;数     所表示的点是{NM}的奇点;

2)如图3AB为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,当P点运动到数轴上的什么位置时,PAB中恰有一个点为其余两点的奇点?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆O的直径,AC是⊙O的一条弦,D的中点,作DEAC,交AB的延长线于点F,连接DA

1)求证:EF为半圆O的切线;

2)若DA=DF=,求阴影区域的面积.(结果保留根号和π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)15[3(54)]

(2)2.5(2)÷1.5

(3)2{8(1)[(4)×2÷(2)6×(6)]}

(4)(5)×(2019)(7)×(2019)12×2019.

(5) (用简便方法)

(6).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x(x为正整数),每月的销量为y箱.

1)写出yx中间的函数关系式和自变量的取值范围;

2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的顶点坐标分别为A-2,1),B-3,-2),C1-2.把△ABC向上平移4个单位长度,再向右平移3个单位长度,得到△ABC′.

1)在图中画出△ABC′,并写出点A′,B′,C′的坐标;

2)连接ACAA,求三角形AAC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?

小敏在思考问题,有如下思路:连接AC.

结合小敏的思路作答

(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由参考小敏思考问题方法解决一下问题

(2)如图2,在(1)的条件下,若连接AC,BD.

①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;

②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴上点对应的数分别是为数轴上两个动点,它们同时向右运动.从点出发,速度为每秒个单位长度;点从点出发,速度为点倍,点为原点.

1)当运动秒时,点对应的数分别是 .

2)求运动多少秒时,点中恰有一个点为另外两个点所连线段的中点?

查看答案和解析>>

同步练习册答案