【题目】如图,AB为⊙O的直径,CD切⊙O于点D,AC⊥CD于点C,交⊙O于点E,连接AD、BD、ED.
(1)求证:BD=ED;
(2)若CE=3,CD=4,求AB的长.
【答案】(1)证明见解析;(2).
【解析】
试题(1)连接OD、OE,由切线的性质可知OD⊥CD,从而可证明AC∥OD,接下来由平行线的性质、等腰三角形的性质可证明∠EOD=∠DOB;
(2)在△CED中依据勾股定理可求得ED的长,从而得到BD的长,接下来证明△ECD∽△BDA,依据相似三角形的性质可求得AB的长.
试题解析:(1)连接OD、OE.
∵CD切⊙O于点D,
∴OD⊥CD.
∵AC⊥CD,
∴OD∥AC.
∴∠EAO=∠DOB,∠AEO=∠EOD.
又∵∠EAO=∠AEO,
∴∠EOD=∠DOB.
∴BD=ED.
(2)∵AC⊥CD,
∴∠ACD=90°
又∵CE=3,CD=4,
∴ED=5.
∵BD=ED,
∴BD=5.
∵AB为⊙O的直径,
∴∠ADB=90°
∴∠ACD=∠ADB.
∵四边形ABDE内接于⊙O,
∠CED=∠B,
∴△CDE∽△DAB.
∴.
∴.
∴AB=.
科目:初中数学 来源: 题型:
【题目】某市卫生局为了了解该市社区医院对患者随访情况,随机抽查了部分社区医院一年来对患者随访的次数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:
请根据图中提供的信息,回答下列问题:
(1)该市卫生局共抽查了社区医院的患者多少人?并补全条形统计图;
(2)请直接写出在这次抽样调查中的众数是 ,中位数是 ;
(3)如果该市社区医院患者有60000人,请你估计“随访的次数不少于7次”社区医院的患者有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,直径AB=8,∠A=30°,AC=8,AC与⊙O交于点D.
(1)求证:直线BD是线段AC的垂直平分线;
(2)若过点D作DE⊥BC,垂足为E,求证:DE是⊙O的切线;
(3)若点F是AC的三等分点,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着生活水平的提高,人们对空气质量的要求也越来越高,为了了解3月中旬长春市城区的空气质量情况,某校“综合实践环境调查小组”,从“2345天气预报”网,抽取了朝阳区和南关区这两个城区2019年3月11日﹣2019年3月20日的空气质量指数,作为样本进行统计,过程如下,请补充完整收集数据
朝阳区 | 167 | 61 | 79 | 78 | 97 | 153 | 59 | 179 | 85 | 209 |
南关区 | 74 | 54 | 47 | 47 | 43 | 43 | 59 | 104 | 119 | 251 |
(备注:空气质量指数,简称AQI,是定期描述空气质量的)
整理、描述数据按下表整理,描述这两城区空气质量指数的数据:
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 |
朝阳区 |
|
|
|
|
|
南关区 | 4 | 3 | 2 | 0 | 1 |
(说明:空气质量指数≤50时,空气质量为优,50<空气质量指数≤100时,空气场量为良,100<空气质量指数≤150时,空气质量为轻微污染,150<空气质量指数≤200时,空气质量为中度污染,200<空气质量指数≤300时,空气质量为重度污染)
分析数据
两城区的空气质量指数的平均数、中位数、方差如下表所示
城区 | 平均数 | 中位数 | 方差 |
朝阳区 | 116.7 | 91 | 2999.12 |
南关区 | 84.1 |
| 4137.66 |
请将以上两个表格补充完整得出结论
可以推断出哪个城区这十天中空气质量情况比较好?请至少从两个不同的角度说明推断的合理性
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xoy中,A(﹣3,0),B(0,1),形状相同的抛物线Cn(n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C2的顶点坐标为_____;抛物线C8的顶点坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的x,y二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1a2,把y2项系数c分解成两个因数,c1,c2的积,即c=c1c2,并使a1c2+a2c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y)
例:分解因式:x2﹣2xy﹣8y2
解:如右图,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×(﹣4)+1×2∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y),而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,
如图1,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);
例:分解因式:x2+2xy﹣3y2+3x+y+2
解:如图2,其中1=1×1,﹣3=(﹣1)×3,2=1×2;
而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)
请同学们通过阅读上述材料,完成下列问题:
(1)分解因式:6x2﹣7xy+2y2= x2﹣6xy+8y2﹣5x+14y+6=
(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.
(3)已知x,y为整数,且满足x2+3xy+2y2+2x+4y=﹣1,求x,y.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.
(1)求证:AC是⊙O的切线;
(2)若BF=6,⊙O的半径为5,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,
(1)作出△APC的PC边上的高;
(2)若∠2=51°,求∠3;
(3)若直尺上点P处刻度为2,点C处为8,点M处为3,点N处为7,求S△BMN:S△BPC的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com