【题目】“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的x,y二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1a2,把y2项系数c分解成两个因数,c1,c2的积,即c=c1c2,并使a1c2+a2c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y)
例:分解因式:x2﹣2xy﹣8y2
解:如右图,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×(﹣4)+1×2∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y),而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,
如图1,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);
例:分解因式:x2+2xy﹣3y2+3x+y+2
解:如图2,其中1=1×1,﹣3=(﹣1)×3,2=1×2;
而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)
请同学们通过阅读上述材料,完成下列问题:
(1)分解因式:6x2﹣7xy+2y2= x2﹣6xy+8y2﹣5x+14y+6=
(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.
(3)已知x,y为整数,且满足x2+3xy+2y2+2x+4y=﹣1,求x,y.
【答案】(1)(2x﹣1)(3x﹣2);(x﹣2y﹣2)(x﹣4y﹣3)(2)43或者﹣78(3)当x=﹣7时,y=4;当x=﹣1时,y=0
【解析】
(1)结合题意画出图形,即可得出结论;
(2)结合题意画出图形,即可得出结论;
(3)将等式左边先用十字相乘法分解因式,再提取公因式,将右边﹣1改写成1×(﹣1)的形式,由x、y均为整数可得出关于x、y的二元一次方程组,解方程组即可得出结论.
解:(1)如图3,
其中6=2×3,2=(﹣1)×(﹣2);而﹣7=2×(﹣3)+3×(﹣1);
∴6x2﹣7xy+2y2=(2x﹣y)(3x﹣2y).
如图4,
其中1×1=1,(﹣2)×(﹣4)=8,(﹣2)×(﹣3)=6;
而﹣6=1×(﹣4)+1×(﹣2),﹣5=1×(﹣3)+1×(﹣2),14=(﹣2)×(﹣3)+(﹣4)×(﹣2);
∴x2﹣6xy+8y2﹣5x+14y+6=(x﹣2y﹣2)(x﹣4y﹣3).
故答案为:(2x﹣1)(3x﹣2);(x﹣2y﹣2)(x﹣4y﹣3).
(2)如图5,
∵关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,
∴存在:其中1×1=1,9×(﹣2)=﹣18,(﹣8)×3=﹣24;
而7=1×(﹣2)+1×9,﹣5=1×(﹣8)+1×3,m=9×3+(﹣2)×(﹣8)=43或m=9×(﹣8)+(﹣2)×3=﹣78.
故若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,m的值为43或者﹣78.
(3)∵x2+3xy+2y2+2x+4y=(x+2y)(x+y)+2(x+2y)=(x+2y)(x+y+2)=﹣1=1×(﹣1),且x、y为整数,
∴有,或,
解得:或.
故当x=﹣7时,y=4;当x=﹣1时,y=0.
科目:初中数学 来源: 题型:
【题目】雾霾是对大气中各种悬浮颗粒物含量超标的笼统表述,雾霾的主要危害可归纳为两种:一是对人体产生危害,二是对交通产生危害.雾霾天气是一种大气污染状态,成都市区冬天雾霾天气比较严重,很多家庭兴起了为家里添置“空气清洁器”的热潮,为此,我市某商场根据民众健康要,代理销售某种进价为600元/台的家用“空气清洁器”.经过市场销售后发现:在一个月内,当售价是700元/台时,可售出350台,且售价每提高10元,就会少售出5台.
(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;
(2)请计算当售价x(元台)定为多少时,该商场每月销售这种“空气清洁器”所获得的利润W(元)最大?最大利润是多少?
(3)若政府计划遴选部分商场,将销售“空气清洁器”纳入民生工程项目,规定:每销售一台“空气淸洁器”,财政补贴商家200元,但销售利润不能高于进价的25%,请问:该商场想获取最大利润,是否参与竞标此民生工程项目?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A的坐标为(0,1),点B是x轴正半轴上一点,以AB为边作等腰直角三角形ABC,使∠BAC=90°,点C在第一象限,若点C在函数y=(x>0)的图象上,则△ABC的面积为( )
A. 1B. 2C. D. 3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,CD切⊙O于点D,AC⊥CD于点C,交⊙O于点E,连接AD、BD、ED.
(1)求证:BD=ED;
(2)若CE=3,CD=4,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)
(1)若顾客选择方式一,则享受9折优惠的概率为多少;
(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④FP=FC;其中正确的判断有( )
A. 只有①②B. 只有③④C. 只有①③④D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在一次大课间活动中,采用了四钟活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.
请结合统计图,回答下列问题:
(1)本次调查学生共 人, = ,并将条形图补充完整;
(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
(3)学校让每班在A、B、C、D四钟活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下说法正确的有( )
①正八边形的每个内角都是135°
②与是同类二次根式
③长度等于半径的弦所对的圆周角为30°
④反比例函数y=﹣,当x<0时,y随x的增大而增大.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某专卖店准备购进甲、乙两种运动鞋,其进价和售价如下表所示。已知用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.
运动鞋价格 | 甲 | 乙 |
进价元/双) | m | m-30 |
售价(元/双) | 300 | 200 |
(1)求m的值;
(2)要使购进的甲,乙两种运动鞋共200双的总利润不少于21700元且不超过22300元,问该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店决定对甲种运动鞋每双优惠a(60<a<80)元出售,乙种运动鞋价格不变,那么该专卖店要获得最大利润应如何进货?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com