相关习题
 0  347994  348002  348008  348012  348018  348020  348024  348030  348032  348038  348044  348048  348050  348054  348060  348062  348068  348072  348074  348078  348080  348084  348086  348088  348089  348090  348092  348093  348094  348096  348098  348102  348104  348108  348110  348114  348120  348122  348128  348132  348134  348138  348144  348150  348152  348158  348162  348164  348170  348174  348180  348188  366461 

科目: 来源: 题型:

【题目】二次函数的图象如图所示,以下结论:①abc0;②4acb2;③2a+b0;④其顶点坐标为(,﹣2);⑤当x时,yx的增大而减小;⑥a+b+c0正确的有(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目: 来源: 题型:

【题目】如图已知BE平分∠ABDDE平分∠BDC且∠EBDEDB90°.

(1)试说明:ABCD

(2)HBE的延长线与直线CD的交点BI平分∠HBD写出∠EBI与∠BHD的数量关系并说明理由

查看答案和解析>>

科目: 来源: 题型:

【题目】如图, OAB与ODC是位似图形 。

试问:(1)AB与CD平行吗?请说明理由 。

(2)如果OB=3,OC=4,OD=3.5.试求OAB与ODC的相似比及OA的长 。

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)问题发现:如图1,ACBDCE均为等边三角形,当DCE旋转至点A,D,E在同一直线上,连接BE.

填空:① AEB的度数为_______②线段AD、BE之间的数量关系是______

(2)拓展研究:

如图2,ACBDCE均为等腰三角形,且∠ACB=DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.

(3)探究发现:

1中的ACBDCE,在DCE旋转过程中当点A,D,E不在同一直线上时,设直线ADBE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.

【答案】160°AD=BE;(2AB=17;(3AOE的度数是60°120°

【解析】试题分析:1)由条件易证ACD≌△BCE,从而得到:AD=BEADC=BEC.由点ADE在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.

2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由DCE为等腰直角三角形及CMDCEDE边上的高可得CM=DM=ME,从而证到AE=2CH+BE

3)由(1)知ACD≌△BCE,得∠CAD=CBE,由∠CAB=ABC=60°,可知∠EAB+ABE=120°,根据三角形的内角和定理可知∠AOE=60°

试题解析:1ACBDCE均为等边三角形,

CA=CBCD=CEACB=DCE=60°.

∴∠ACD=BCE.

ACDBCE中,

ACDBCE(SAS).

∴∠ADC=BEC.

DCE为等边三角形,

∴∠CDE=CED=60°.

∵点ADE在同一直线上,

∴∠ADC=120°.

∴∠BEC=120°.

∴∠AEB=BECCED=60°.

故答案为:60°.

②∵ACDBCE

AD=BE.

故答案为:AD=BE.

2ACBDCE均为等腰直角三角形,

CA=CBCD=CEACB=DCE=90°.

∴∠ACD=BCE.

ACDBCE中,

ACDBCE(SAS).

AD=BE=AE-DE=8ADC=BEC

DCE为等腰直角三角形

∴∠CDE=CED=45°.

∵点ADE在同一直线上,

∴∠ADC=135°.

∴∠BEC=135°.

∴∠AEB=BECCED=90°.

AB==17

31ACDBCE

∴∠CAD=CBE

∵∠CAB=CBA=60°

∴∠OAB+OBA=120°

∴∠AOE=180°120°=60°

同理求得∠AOB=60°

∴∠AOE=120°

∴∠AOE的度数是60°120°.

点睛:本题考查了等边三角形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力.

型】解答
束】
26

【题目】如图,直线MNy=-xbx轴交于点M40),与y轴交于点N,长方形ABCD的边ABx轴上,AB2AD1.长方形ABCD由点A与点O重合的位置开始,以每秒1个单位长度的速度沿x轴正方向作匀速直线运动,当点A与点M重合时停止运动.设长方形运动的时间为t秒,长方形ABCD与△OMN重合部分的面积为S

1)求直线MN的解析式;

2)当t1时,请判断点C是否在直线MN上,并说明理由;

3)请求出当t为何值时,点D在直线MN上;

4)直接写出在整个运动过程中St的函数关系式

查看答案和解析>>

科目: 来源: 题型:

【题目】某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:①甲队单独完成这项工程刚好如期完成;②乙队单独完成这项工程要比规定日期多用6天;③若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:

1两队单独做各要几天完成?

2在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示ABC在边长为1个单位的网格中,请根据下列提示填空:

1为了把△ABC平移得到△A′B′C′,可以先将△ABC 平移_______,再向 平移_______.

2)求出△A’B’C’的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知一次函数y1kxb的图像经过点(0,-2),(2,2).

(1)求一次函数的表达式,并在所给直角坐标系中画出此函数的图像;;

(2)根据图像回答:当x 时,y1=0;

(3)求直线y1kxb、直线y2=-2x+4与y轴围成的三角形的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图已知ADBC12要说明∠34180°请补充完整解题过程并在括号内填上相应的依据

解:因为ADBC(已知)

所以∠13(              )

因为∠12(已知)

所以∠23.

所以BE________(              )

所以∠34180°(              )

查看答案和解析>>

科目: 来源: 题型:

【题目】解不等式组: .请结合题意填空,完成本体的解法.

(1)解不等式(1),得________;

(2)解不等式(2),得________;

(3)把不等式 (1)和 (2)的解集在数轴上表示出来.

(4)原不等式的解集为________.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC中,∠C=90°AC=3BC=4,点DAB的中点,点EDC的延长线上,且CE=CD,过点BBFDEAE的延长线于点F,交AC的延长线于点G

1)求证:AB=BG

2)若点P是直线BG上的一点,试确定点P的位置,使BCPBCD相似.

查看答案和解析>>

同步练习册答案