科目: 来源: 题型:
【题目】暑假期间,学校布置了综合实践活动任务,王涛小组四人负责调查本村的500户农民的家庭收入情况,他们随机调查了40户居民家庭的收入情况(收入取整数,单位:元),并制定了频数分布表(如图Ⅰ)和频数分布直方图(如图Ⅱ).
![]()
![]()
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图;
(3)请你估计该村属于中等收入(不低于1000元小于1600元)的大约有多少户?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是【 】
![]()
A.(2,0) B.(-1,1) C.(-2,1) D.(-1,-1)
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,则∠AEB的度数为__________.
(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE.求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.![]()
(1)求抛物线的解析式及点C的坐标;
(2)求证:△ABC是直角三角形;
(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于两个不相等的有理数a,b,我们规定符号
表示a,b中的较大值,如
,
,请解答下列问题:
(1)
_______________;
(2)如果
,求x的取值范围;
(3)如果
,求x的值
查看答案和解析>>
科目: 来源: 题型:
【题目】应用题
有A、B两个商场以同样价格出售同样商品,且各自推出了不同的优惠方案:
在A商场累计购物超过200元后,超出部分按80%收费;
在B商场累计购物满100元后,超出的部分按90%收费。
设累计购物x(x>200)元,用x表示A、B两商场的实际费用并指明顾客选择到哪家购物合适?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.![]()
(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;
(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;![]()
(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读下面材料后,解答问题。
分母中含有未知数的不等式叫分式不等式。如:
;
等。那么如何求出它们的解集呢?
根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负,其字母表达式为:
(1)若
,
,则
;若
,
,则
;
(2)若
,
,则
;若
,
,则
.
请解答下列问题:
(1)反之:①若
则
或
;②若
,则__________;
(2)根据上述规律,求不等式
的解集.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣
x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为
m. ![]()
(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读与理解:
三角形中一边中点与这边所对顶点的线段称为三角形的中线。
三角形的中线的性质:三角形的中线等分三角形的面积。
即如图1,AD是
中BC边上的中线,则
,
理由:
,
,
即:等底同高的三角形面积相等。
操作与探索:
![]()
在如图2至图4中,
的面积为a。
(1)如图2,延长
的边BC到点D,使CD=BC,连接DA,若
的面积为
,则
(用含a的代数式表示);
(2)如图3,延长
的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE,若
的面积为
,则
_________(用含a的代数式表示);
(3)在图3的基础上延长AB到点F,使BF=AB,连接FD,FE,得到
(如图4),若阴影部分的面积为
,则
________(用含a的代数式表示)
(4)拓展与应用:
如图5,已知四边形ABCD的面积是a;E,F,G,H分别是AB,BC,CD的中点,求图中阴影部分的面积?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com