相关习题
 0  348403  348411  348417  348421  348427  348429  348433  348439  348441  348447  348453  348457  348459  348463  348469  348471  348477  348481  348483  348487  348489  348493  348495  348497  348498  348499  348501  348502  348503  348505  348507  348511  348513  348517  348519  348523  348529  348531  348537  348541  348543  348547  348553  348559  348561  348567  348571  348573  348579  348583  348589  348597  366461 

科目: 来源: 题型:

【题目】阅读下面材料:
在数学课上,老师提出如下问题:
尺规作图:作Rt△ABC,使其斜边AB=c,一条直角边BC=a.
已知线段a,c如图.
小芸的作法如下:
①取AB=c,作AB的垂直平分线交AB于点O;
②以点O为圆心,OB长为半径画圆;
③以点B为圆心,a长为半径画弧,与⊙O交于点C;
④连接BC,AC.
则Rt△ABC即为所求.
老师说:“小芸的作法正确.”
请回答:小芸的作法中判断∠ACB是直角的依据是

查看答案和解析>>

科目: 来源: 题型:

【题目】如图AOCBOC互余OD平分BOCEOC2∠AOE

1)若AOD75°AOE的度数

2)若DOE54°EOC的度数

查看答案和解析>>

科目: 来源: 题型:

【题目】老师在课堂上出了一个问题:若点A(﹣2,y1),B(1,y2)和C(4,y3)都在反比例函数y=的图象上,比较y1 , y2 , y3的大小.
小明是这样思考的:当k<0时,反比例函数的图象是y随x的增大而增大的,并且﹣2<1<4,所以y1<y2<y3
你认为小明的思考 (填“正确”和“不正确”),理由是

查看答案和解析>>

科目: 来源: 题型:

【题目】已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.

(1)若线段AB=a,CE=b,|a﹣15|+(b﹣4.5)2=0,求a,b的值;

(2)如图1,在(1)的条件下,求线段DE的长;

(3)如图2,若AB=15,AD=2BE,求线段CE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中卷第九勾股,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”
译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步)
你的计算结果是:出南门 步而见木.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地下车库出口处安装了“两段式栏杆”,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图所示的位置,其中AB⊥BC,EF∥BC,∠AEF=135°,AB=AE=1.3米,那么适合该地下车库的车辆限高标志牌为(栏杆宽度忽略不计.参考数据:≈1.4)(  )

A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在平行四边形ABCD中,连接BD,AD=6cm,BD=8cm,∠DBC=90°,现将△AEF沿BD的方向匀速平移,速度为2cm/s,同时,点G从点D出发,沿DC的方向匀速移动,速度为2cm/s.当△AEF停止移动时,点G也停止运动,连接AD,AG,EG,过点E作EH⊥CD于点H,如图2所示,设△AEF的移动时间为t(s)(0<t<4).
(1)当t=1时,求EH的长度;
(2)若EG⊥AG,求证:EG2=AEHG;
(3)设△AGD的面积为y(cm2),当t为何值时,y可取得最大值,并求y的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点.

(1)求线段MN的长.

(2)若C为线段AB上任意一点,满足AC+CB=a(cm),其他条件不变,你能猜想出MN的长度吗?并说明理由.

(3)若C在线段AB的延长线上,且满足AC-CB=b(cm),M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为:|x﹣y|表示在数轴上数x、y对应点之间的距离;在解题中,我们常常运用绝对值的几何意义.

①解方程|x|=2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为x=±2.

②在方程|x﹣1|=2中,x的值就是数轴上到1的距离为2的点对应的数,显然x=3x=﹣1.

③在方程|x﹣1|+|x+2|=5中,显然该方程表示数轴上与1和﹣2的距离之和为5 的点对应的x值,在数轴上1和﹣2的距离为3,满足方程的x的对应点在1的右边或﹣2的左边.若x的对应点在1的右边,由图示可知,x=2;同理,若x的对应点在﹣2的左边,可得x=﹣3,所以原方程的解是x=2x=﹣3.根据上面的阅读材料,解答下列问题:

(1)方程|x|=5的解是_______________.

(2)方程|x﹣2|=3的解是_________________.

(3)画出图示,解方程|x﹣3|+|x+2|=9.

查看答案和解析>>

科目: 来源: 题型:

【题目】小明是个爱探究的学生,在学习完等腰三角形的判定定理之后,对于等腰(如图甲),若,,小明发现,只要作的平分线就可以将分成两个等腰三角形.

(1)你认为小明的发现正确吗?若正确,请给出证明过程;若不正确,请说明理由;

(2)请你对图乙的三角形进行探索,将分成两个等腰三角形,并写出顶角度数;

(3)请你对图丙的三角形进行再探索,将分成三个等腰三角形,并写出顶角度数.

查看答案和解析>>

同步练习册答案