相关习题
 0  348476  348484  348490  348494  348500  348502  348506  348512  348514  348520  348526  348530  348532  348536  348542  348544  348550  348554  348556  348560  348562  348566  348568  348570  348571  348572  348574  348575  348576  348578  348580  348584  348586  348590  348592  348596  348602  348604  348610  348614  348616  348620  348626  348632  348634  348640  348644  348646  348652  348656  348662  348670  366461 

科目: 来源: 题型:

【题目】如图,在菱形ABCD中,AB=4cm∠ADC=120°,点EF同时由AC两点出发,分别沿ABCB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t△DEF为等边三角形,则t的值为

查看答案和解析>>

科目: 来源: 题型:

【题目】随着手机的普及,微信一种聊天软件的兴起,许多人抓住这种机会,做起了微商,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况超额记为正,不足记为负单位:斤

星期

与计划量的差值

(1)根据记录的数据可知前三天共卖出 ______ 斤;

(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 ______ 斤;

(3)本周实际销售总量达到了计划数量没有?

(4)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,C,D是以线段AB为直径的⊙O上两点,若CA=CD,且∠ACD=30°,则∠CAB=(
A.15°
B.20°
C.25°
D.30°

查看答案和解析>>

科目: 来源: 题型:

【题目】同学们都知道:|5|在数轴上表示数5的点与原点的距离,而|5-(-2)|表示5-2之差的绝对值,实际上也可理解为5-2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:

(1)表示 的距离.

(2)数轴上表示x 7的两点之间的距离可以表示为 .

(3)如果|x-2|=5,则x= .

(4)同理|x+1|+|x-2|表示数轴上有理数x所对应的点到-12所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+1|+|x-2|=3,这样的整数是 .

(5)由以上探索猜想对于任何有理数x,|x+3|+|x-6|的最小值是 .

查看答案和解析>>

科目: 来源: 题型:

【题目】二次函数y=ax2+bx+c的图象如图所示,则反比例函数 与一次函数y=bx+c在同一坐标系中的大致图象是(
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】将直角边长为6的等腰直角△AOC放在平面直角坐标系中,点O为坐标原点,点C、A分别在x轴,y轴的正半轴上,一条抛物线经过点A、C及点B(﹣3,0).

(1)求该抛物线的解析式;
(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;
(3)若点P(t,t)在抛物线上,则称点P为抛物线的不动点,将(1)中的抛物线进行平移,平移后,该抛物线只有一个不动点,且顶点在直线y=2x﹣ 上,求此时抛物线的解析式.

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1

(1)如图1,当点C1在线段CA的延长线时,求∠CC1A1的度数;
(2)已知AB=6,BC=8,
①如图2,连接AA1 , CC1 , 若△CBC1的面积为16,求△ABA1的面积;
②如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转的过程中,点P的对应是点P1 , 直接写出线段EP1长度的最大值.
(3)线段EP1长度的最大值为11,理由如下:

查看答案和解析>>

科目: 来源: 题型:

【题目】把下列各数填在相应的括号内

, -, 0, ,3.1415926, 20%, 3, 2, -1,3.1010010001…(每两个1之间逐次增加10)

①正数集合{ ……}

②负数集合{ ……}

③整数集合{ ……}

④负分数集合{ ……}

⑤无理数集合{ ……}

查看答案和解析>>

科目: 来源: 题型:

【题目】计算:(1) (2)

(3) (4)

(5) (6)-14+16÷(-2)3×|-3-1|

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.
(1)根据题意,填空: ①顶点C的坐标为
②B点的坐标为
(2)求抛物线的解析式;
(3)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣ (t﹣19)2+8(0≤t≤40),且当点C到水面的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?

查看答案和解析>>