科目: 来源: 题型:
【题目】某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.
(1)求商家降价前每星期的销售利润为多少元?
(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2
=(1+
)2,善于思考的小明进行了以下探索:
设a+b
=(m+n
)2(其中a、b、m、n均为整数),则有a+b
=m2+2n2+2mn
,∴a=m2+2n2,b=2mn,这样小明就找到了一种把部分a+b
的式子化为平方式的方法。
请我仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b
=(m+n
)2,用含m、n的式子分别表示a、b,得a=________, b=___________.
(2)若a+4
=(m+n
)2,且a、m、n均为正整数,求a的值。
查看答案和解析>>
科目: 来源: 题型:
【题目】结合数轴与绝对值的知识回答下列问题:
(1)探究:
①数轴上表示5和2的两点之间的距离是多少.
②数轴上表示﹣2和﹣6的两点之间的距离是多少.
③数轴上表示﹣4和3的两点之间的距离是多少.
(2)归纳:
一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.
(3)应用:
①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.
②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.
![]()
③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.
![]()
(4)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1,A2,A3,A4,A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,小明要给正方形桌子买一块正方形桌布.铺成图1时,四周垂下的桌布,其长方形部分的宽均为20cm;铺成图2时,四周垂下的桌布都是等腰直角三角形,且桌面四个角的顶点恰好在桌布边上,则要买桌布的边长是_____cm.(提供数据:
≈1.4,
≈1.7)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,设正方体ABCD﹣A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从A点出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是:![]()
白甲壳虫爬行的路线是:
那么当黑、白两个甲壳虫各爬行完第2008条棱分别停止在所到的正方体顶点处时,它们之间的距离是( )
[Failed to download image : http://192.168.0.10:8086/QBM/2018/6/4/1959595487502336/null/STEM/846c38f1abae464caa886400e123363c.png]
A. 0 B. 1 C. √2 D. √3
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
![]()
(2)结论应用:① 如图2,点M,N在反比例函数
(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.
② 若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断 MN与EF是否平行?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com