科目: 来源: 题型:
【题目】如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
![]()
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
查看答案和解析>>
科目: 来源: 题型:
【题目】两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程是( )
A.
﹣
=15
B.
﹣
= ![]()
C.
﹣
=15
D.
﹣
= ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).
![]()
(1)请直接写出点B关于点A对称的点的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;
(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )![]()
A.a>0
B.c<0
C.3是方程ax2+bx+c=0的一个根
D.当x<1时,y随x的增大而减小
查看答案和解析>>
科目: 来源: 题型:
【题目】发现与探索.
(1)根据小明的解答(图1)将下列各式因式分解
![]()
①a2-12a+20
②(a-1)2-8(a-1)+7
③a2-6ab+5b2
(2)根据小丽的思考(图2)解决下列问题.
①说明:代数式a2-12a+20的最小值为-16.
②请仿照小丽的思考解释代数式-(a+1)2+8的最大值为8,并求代数式-a2+12a-8的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】多边形的内角和随着边数的变化而变化.设多边形的边数为n,内角和为N,则变量N与n之间的关系可以表示为N=(n-2)180°.例如:如图四边形ABCD的内角和:N=∠A+∠B+∠C+∠D=(4-2)×180°=360°问:(1)利用这个关系式计算五边形的内角和;(2)当一个多边形的内角和N=720°时,求其边数n.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)
如图,在△ABC中,已知∠ADE=∠B,∠1=∠2,FG⊥AB于点G.
![]()
求证CD⊥AB.
证明:∵∠ADE=∠B(已知),
∴ ( ),
∵ DE∥BC(已证),
∴ ( ),
又∵∠1=∠2(已知),
∴ ( ),
∴CD∥FG( ),
∴ (两直线平行同位角相等),
∵ FG⊥AB(已知),
∴∠FGB=90°(垂直的定义).
即∠CDB=∠FGB=90°,
∴CD⊥AB. (垂直的定义).
查看答案和解析>>
科目: 来源: 题型:
【题目】画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点D的对应点D′.
(1)根据特征画出平移后的△A′B′C′;
(2)利用网格的特征,画出AC边上的高BE并标出画法过程中的特征点;
(3)△A′B′C′的面积为 .
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知凸四边形ABCD中,∠A=∠C=90°.
![]()
(1)如图1,若DE平分∠ADC,BF平分∠ABC的邻补角,判断DE与BF位置关系并证明.
(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com