科目: 来源: 题型:
【题目】如图所示,点O是等边三角形ABC内一点,∠AOB=100°,∠BOC=
, D是△ABC外一点,且△ADC ≌△BOC,连接OD.
(1)求证:△COD是等边三角形;
(2)当
=150°时,请计算△AOD三内角的度数,并判断△AOD的形状;
(3)探究:当
为多少度时,△AOD是等腰三角形?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)如图1,已知△ABC,以AB、AC为边分别向外作正方形ABFD和正方形ACGE,连结BE、CD,猜想BE与CD有什么数量关系?并说明理由;
(2)请模仿正方形情景下构造全等三角形的思路,利用构造全等三角形完成下题:如图2,要测量池塘两岸相对的两点B、E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长(结果保留根号).
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,长方形ABCD的纸片,长AD=10厘米,宽AB=8厘米,AD沿点A对折,点D正好落在BC上的点F处,AE是折痕。
(1)图中有全等的三角形吗?如果有,请直接写出来;
(2)求线段BF的长;
(3)求线段EF的长;
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E.
(1)求证:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度数.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→……,白甲壳虫爬行的路线是AB→BB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2018条棱分别停止在所到的正方体顶点处时,它们之间的距离是( )
![]()
A. 0 B.
C.
D. 1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com