科目: 来源: 题型:
【题目】道外区劳技学校为了调整重点学科建设和师资配备,对学校开设的四个传统重点学科开展学生较喜爱的学科调查问卷活动(每名学生必选且只选一项).如图是在某中学调查的数据绘制成两幅不完整的统计图,解答下列问题: ![]()
(1)求参与本次调查的共有多少名学生?并补全条形统计图.
(2)在扇形统计图中,求喜爱“葫芦烙画”所对应的扇形的圆心角的度数?
(3)若道外区大约有12000名中学生,估计喜欢“陶艺”的共有多少名学生?
查看答案和解析>>
科目: 来源: 题型:
【题目】图1、图2是两张形状大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB、EF的端点均在小正方形的顶点上.
(1)如图1,作出以AB为对角线的正方形并直接写出正方形的周长; ![]()
(2)如图2,以线段EF为一边作出等腰△EFG(点G在小正方形顶点处)且顶角为钝角,并使其面积等于4. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每次薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的是( ) ![]()
A.a=20
B.b=4
C.若工人甲一天获得薪金180元,则他共生产50件
D.若工人乙一天生产m(件),则他获得薪金4m元
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,BD,CE分别为AC,AB边上的中线,BD⊥CE,若BD=4,CE=6,则△ABC的面积为( )![]()
A.12
B.24
C.16
D.32
查看答案和解析>>
科目: 来源: 题型:
【题目】在四边形OABC中,AB∥OC,BC⊥x轴于C,A(1,﹣1),B(3,﹣1),动点P从O点出发,沿x轴正方向以2个单位/秒的速度运动.过P作PQ⊥OA于Q.设P点运动的时间为t秒(0<t<2),△OPQ与四边形OABC重叠的面积为S.![]()
(1)求经过O、A、B三点的抛物线的解析式并确定顶点M的坐标;
(2)用含t的代数式表示P、Q两点的坐标;
(3)将△OPQ绕P点逆时针旋转90°,是否存在t,使得△OPQ的顶点O或Q落在抛物线上?若存在,直接写出t的值;若不存在,请说明理由;
(4)求S与t的函数解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】某生物科技发展公司投资2000万元,研制出一种绿色保健食品.已知该产品的成本为40元/件,试销时,售价不低于成本价,又不高于180元/件.经市场调查知,年销售量y(万件)与销售单价x(元/件)的关系满足下表所示的规律.
销售单价x(元/件) | … | 60 | 65 | 70 | 80 | 85 | … |
年销售量y(万件) | … | 140 | 135 | 130 | 120 | 115 | … |
(1)y与x之间的函数关系式及自变量x的取值范围。
(2)经测算:年销售量不低于90万件时,每件产品成本降低2元,设销售该产品年获利润为W(万元)(W=年销售额﹣成本﹣投资),求出年销售量低于90万件和不低于90万件时,W与x之间的函数关系式;
(3)在(2)的条件下,当销售单位定为多少时,公司销售这种产品年获利润最大?最大利润为多少万元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.![]()
(1)若轮船照此速度与航向航行,何时到达海岸线?
(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:
≈1.4,
≈1.7)
查看答案和解析>>
科目: 来源: 题型:
【题目】反比例函数y=
在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数y=
的图象于点M,△AOM的面积为3.![]()
(1)求反比例函数的解析式;
(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数y=
的图象上,求t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com