科目: 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(
,1),下列结论:①ac<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正确结论的个数是( ) ![]()
A.1
B.2
C.3
D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE ②四边形CDFE不可能是正方形 ③△DFE是等腰直角三角形 ④S四边形CDFE=
S△ABC , 上述结论中始终正确的有( ) ![]()
A.①②③
B.②③④
C.①③④
D.①②④
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=﹣
x2+bx+c与一次函数y=﹣x+4分别交y轴、x轴于A、B两点.![]()
(1)求这个抛物线的解析式;
(2)设P(x,y)是抛物线在第一象限内的一个动点,过点P作直线PH⊥x轴于点H,交直线AB于点M.
①求当x取何值时,PM有最大值?最大值是多少?
②当PM取最大值时,以A、P、M、N为顶点构造平行四边形,求第四个顶点N的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC内接于⊙O,AD平分∠BAC交⊙O于点D,过点D作DE∥BC交AC的延长线于点E. ![]()
(1)试判断DE与⊙O的位置关系,并证明你的结论;
(2)若∠E=60°,⊙O的半径为5,求AB的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知关于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若原方程的两个实数根为x1、x2 , 且满足x12+x22=|x1|+|x2|+2x1x2 , 求m的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一次函数与反比例函数y=
的图象交于A(1,4),B(4,n)两点. ![]()
(1)求反比例函数的解析式;
(2)点P是x轴上的一动点,试确定点P使PA+PB最小,并求出点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形ABCD中,∠ABC=∠ADC=90°,BD⊥AC,垂足为P. ![]()
(1)请作出Rt△ABC的外接圆⊙O;(保留作图痕迹,不写作法)
(2)点D在⊙O上吗?说明理由;
(3)试说明:AC平分∠BAD.
查看答案和解析>>
科目: 来源: 题型:
【题目】不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为
.
(1)求袋中黄球的个数;
(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣6,0),B(﹣1,1),C(﹣3,3),将△ABC绕点B顺时针方向旋转90°后得到△A1BC1 . ![]()
(1)画出△A1BC1 , 写出点A1、C1的坐标;
(2)计算线段BA扫过的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com