相关习题
 0  349914  349922  349928  349932  349938  349940  349944  349950  349952  349958  349964  349968  349970  349974  349980  349982  349988  349992  349994  349998  350000  350004  350006  350008  350009  350010  350012  350013  350014  350016  350018  350022  350024  350028  350030  350034  350040  350042  350048  350052  350054  350058  350064  350070  350072  350078  350082  350084  350090  350094  350100  350108  366461 

科目: 来源: 题型:

【题目】某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.
(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?
(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行八百米跑体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息回答下列问题:
(1)求本次测试共调查了多少名学生?
(2)求本次测试结果为B等级的学生数,并补全条形统计图;
(3)若该中学八年级共有900名学生,请你估计八年级学生中体能测试结果为D等级的学生有多少人?

查看答案和解析>>

科目: 来源: 题型:

【题目】解方程与不等式
(1)解方程:x2+3x﹣2=0;
(2)解不等式组:

查看答案和解析>>

科目: 来源: 题型:

【题目】计算下列各题:
(1)﹣|﹣1|+ cos30°﹣(﹣ 2+(π﹣3.14)0
(2)(x﹣y)2﹣(x﹣2y)(x+y)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点F在边AC上,并且CF=1,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四边形ABCD中,∠ABC=90°,AB=BC=2 ,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为(
A.2
B.
C.
D.3

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,把矩形OCBA放置于直角坐标系中,OC=3,BC=2,取AB的中点M,连接MC,把△MBC沿x轴的负方向平移OC的长度后得到△DAO.

(1)试直接写出点D的坐标;
(2)已知点B与点D在经过原点的抛物线上,点P在第一象限内的该抛物线上移动,过点P作PQ⊥x轴于点Q,连接OP.
①若以O、P、Q为顶点的三角形与△DAO相似,试求出点P的坐标;
②试问在抛物线的对称轴上是否存在一点T,使得|TO﹣TB|的值最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】【问题引入】 已知:如图BE、CF是△ABC的中线,BE、CF相交于G.求证: = =

证明:连结EF
∵E、F分别是AC、AB的中点
∴EF∥BC且EF= BC
= = =
【思考解答】
(1)连结AG并延长AG交BC于H,点H是否为BC中点(填“是”或“不是”)
(2)①如果M、N分别是GB、GC的中点,则四边形EFMN 是四边形. ②当 的值为时,四边形EFMN 是矩形.
③当 的值为时,四边形EFMN 是菱形.
④如果AB=AC,且AB=10,BC=16,则四边形EFMN的面积S=

查看答案和解析>>

科目: 来源: 题型:

【题目】张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,图中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.
(1)汽车行驶小时后加油,中途加油升;
(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;
(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.

查看答案和解析>>

同步练习册答案