相关习题
 0  350175  350183  350189  350193  350199  350201  350205  350211  350213  350219  350225  350229  350231  350235  350241  350243  350249  350253  350255  350259  350261  350265  350267  350269  350270  350271  350273  350274  350275  350277  350279  350283  350285  350289  350291  350295  350301  350303  350309  350313  350315  350319  350325  350331  350333  350339  350343  350345  350351  350355  350361  350369  366461 

科目: 来源: 题型:

【题目】某汽车从A开往360km外的B,全程的前一部分为高速公路,后一部分为普通公路.若汽车在高速公路和普通公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是(
A.汽车在高速公路上的行驶速度为100km/h
B.普通公路总长为90km
C.汽车在普通公路上的行驶速度为60km/h
D.汽车出发后4h到B地

查看答案和解析>>

科目: 来源: 题型:

【题目】有一根40cm的金属棒,欲将其截成x根7cm的小段和y根9cm的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为(
A.x=1,y=3
B.x=4,y=1
C.x=3,y=2
D.x=2,y=3

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为2的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )

A.(1,
B.(﹣1,2)
C.(﹣1,
D.(﹣1,

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0),B(3,0),C(0,3).

(1)求抛物线的表达式及顶点D的坐标;
(2)如图甲,点P是直线BC上方抛物线上一动点,过点P作y轴的平行线,交直线BC于点E,是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,请说明理由;
(3)如图乙,过点A作y轴的平行线,交直线BC于点F,连接DA、DB四边形OAFC沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点B重合时立即停止运动,设运动过程中四边形OAFC与四边形ADBF重叠部分面积为S,请求出S与t的函数关系式.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若KG2=KDGE,试判断AC与EF的位置关系,并说明理由;
(3)在(2)的条件下,若sinE= ,AK=2 ,求FG的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校八年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a元.经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其它费用780元,其中,纯净水的销售价x(元/桶)与年购买总量y(桶)之间满足如图所示关系.
(1)求y与x的函数关系式;
(2)若该班每年需要纯净水380桶,且a为120时,请你根据提供的信息分析一下:该班学生集体改饮桶装纯净水与个人买饮料,哪一种花钱更少?
(3)当a至少为多少时,该班学生集体改饮桶装纯净水一定合算从计算结果看,你有何感想?(不超过30字)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC.
(1)求证:AC=BD;
(2)若sin∠C= ,BC=12,求AD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:

频数

频率

第一组(0≤x<15)

3

0.15

第二组(15≤x<30)

6

a

第三组(30≤x<45)

7

0.35

第四组(45≤x<60)

b

0.20


(1)频数分布表中a= , b= , 并将统计图补充完整;
(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?
(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形④S四边形ABMD= AM2
其中正确结论的是

查看答案和解析>>

同步练习册答案