相关习题
 0  350328  350336  350342  350346  350352  350354  350358  350364  350366  350372  350378  350382  350384  350388  350394  350396  350402  350406  350408  350412  350414  350418  350420  350422  350423  350424  350426  350427  350428  350430  350432  350436  350438  350442  350444  350448  350454  350456  350462  350466  350468  350472  350478  350484  350486  350492  350496  350498  350504  350508  350514  350522  366461 

科目: 来源: 题型:

【题目】如图,已知△ABC中,AB=AC,O为BC的中点,AB与⊙O相切于点D.

(1)求证:AC是⊙O的切线;
(2)若∠B=33°,⊙O的半径为1,求BD的长.(结果精确到0.01)

查看答案和解析>>

科目: 来源: 题型:

【题目】某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y= 的一部分.请根据图中信息解答下列问题:

(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?
(2)求k的值;
(3)当x=18时,大棚内的温度约为多少度?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线y=﹣ x2+mx+n与x轴交于A (﹣2,0)、B两点,与y轴交于点C.抛物线对称轴为直线x=3,且对称轴与x轴交于点D.

(1)求抛物线的解析式;
(2)点P在线段BC上从点C开始向点B运动(点P不与点B、C重合),速度为每秒 个单位,设运动时间为t(单位:s),过点P作x轴的垂线与抛物线相交于点F.求四边形CDBF的面积S关于t的函数关系式.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在△ABC中,CD为AB边上的中线,点E、F分别在线段CD、AD上,且 .点G是EF的中点,射线DG交AC于点H.

(1)求证:△DFE∽△DAC;
(2)请你判断点H是否为AC的中点?并说明理由;
(3)若将△ADH绕点D顺时针旋转至△A′DH′,使射线DH′与射线CB相交于点M(不与B,C重合.图2是旋转后的一种情形),请探究∠BMD与∠BDA′之间所满足的数量关系,并加以证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】直线y= x+2 与x轴,y轴分别交于M,N两点,O为坐标原点,将△OMN沿直线MN翻折后得到△PMN,则点P的坐标为

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,以A点为圆心,以相同的长为半径作弧,分别与射线AM,AN交于B,C两点,连接BC,再分别以B,C为圆心,以相同长(大于 BC)为半径作弧,两弧相交于点D,连接AD,BD,CD.则下列结论错误的是(

A.AD平分∠MAN
B.AD垂直平分BC
C.∠MBD=∠NCD
D.四边形ACDB一定是菱形

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,⊙O的弦BC长为8,点A是⊙O上一动点,且∠BAC=45°,点D,E分别是BC,AB的中点,则DE长的最大值是(

A.4
B.4
C.8
D.8

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AB=5,AC=9,SABC= ,动点P从A点出发,沿射线AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC上由C向A运动,当Q点运动到A点时,P、Q两点同时停止运动,以PQ为边作正方形PQEF(P、Q、E、F按逆时针排序),以CQ为边在AC上方作正方形QCGH.

(1)求tanA的值;
(2)设点P运动时间为t,正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;
(3)当t为何值时,正方形PQEF的某个顶点(Q点除外)落在正方形QCGH的边上,请直接写出t的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车站,然后再转车出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示. 请结合图象解决下面问题:

(1)高铁的平均速度是每小时多少千米?
(2)当颖颖达到杭州火车东站时,乐乐距离游乐园还有多少千米?
(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?

查看答案和解析>>

科目: 来源: 题型:

【题目】小明在课外学习时遇到这样一个问题:
定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1 , b1 , c1是常数)与y=a2x2+b2x+c2(a2≠0,a2 , b2 , c2是常数)满足a1+a2=0,b1=b2 , c1+c2=0,则称这两个函数互为“旋转函数”.
求函数y=﹣x2+3x﹣2的“旋转函数”.
小明是这样思考的:由函数y=﹣x2+3x﹣2可知,a1=﹣1,b1=3,c1=﹣2,根据a1+a2=0,b1=b2 , c1+c2=0,求出a2 , b2 , c2 , 就能确定这个函数的“旋转函数”.
请参考小明的方法解决下面问题:
(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;
(2)若函数y=﹣x2+ mx﹣2与y=x2﹣2nx+n互为“旋转函数”,求(m+n)2015的值;
(3)已知函数y=﹣ (x+1)(x﹣4)的图象与x轴交于点A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1 , B1 , C1 , 试证明经过点A1 , B1 , C1的二次函数与函数y=﹣ (x+1)(x﹣4)互为“旋转函数.”

查看答案和解析>>

同步练习册答案