相关习题
 0  350499  350507  350513  350517  350523  350525  350529  350535  350537  350543  350549  350553  350555  350559  350565  350567  350573  350577  350579  350583  350585  350589  350591  350593  350594  350595  350597  350598  350599  350601  350603  350607  350609  350613  350615  350619  350625  350627  350633  350637  350639  350643  350649  350655  350657  350663  350667  350669  350675  350679  350685  350693  366461 

科目: 来源: 题型:

【题目】教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的( )

A.7:20
B.7:30
C.7:45
D.7:50

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图①,BP、CP分别平分△ABC的外角∠CBD、∠BCE,BQ、CQ分别平分∠PBC、∠PCB,BM、CN分别是∠PBD、∠PCE的角平分线.

(1)∠BAC=40°时,∠BPC=   ,∠BQC=   

(2)BM∥CN时,求∠BAC的度数;

(3)如图,当∠BAC=120°时,BM、CN所在直线交于点O,直接写出∠BOC的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,以点A为圆心,AB长为半径画弧,交CD于点E,连接AE、BE.作BF⊥AE于点F.
(1)求证:BF=AD;
(2)若EC= ﹣1,∠FEB=67.5°,求扇形ABE的面积(结果保留π).

查看答案和解析>>

科目: 来源: 题型:

【题目】小敏在作⊙O的内接正五边形时,先做了如下几个步骤:
(i)作⊙O的两条互相垂直的直径,再作OA的垂直平分线交OA于点M,如图1;
(ii)以M为圆心,BM长为半径作圆弧,交CA于点D,连结BD,如图2.若⊙O的半径为1,则由以上作图得到的关于正五边形边长BD的等式是( )

A.BD2= OD
B.BD2= OD
C.BD2= OD
D.BD2= OD

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是(
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】教师运动会中,甲,乙两组教师参加“两人背夹球”往返跑比赛,即:每组两名教师用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.若距起点的距离用y(米)表示,时间用x(秒)表示.下图表示两组教师比赛过程中yx的函数关系的图象.根据图象,有以下四个推断:

①乙组教师获胜

②乙组教师往返用时相差2秒

③甲组教师去时速度为0.5米/秒

④返回时甲组教师与乙组教师的速度比是2:3

其中合理的是( )

A. ①② B. ①③ C. ②④ D. ①④

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AB=4,D是AB上的一点(不与点A、B重合),DE∥BC,交AC于点E,则 的最大值为

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,水平面上有一个坡度i=1:2的斜坡AB,矩形货柜DEFG放置在斜坡上,己知DE=2.5m.EF=2m,BF=3.5m,则点D离地面的高DH为 m.(结果保留根号)

查看答案和解析>>

科目: 来源: 题型:

【题目】n边形的对角线把n边形分割成(n-2)个三角形,共有多少种不同的分割方案(n≥4)?

(探究)为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进转化,最后猜想得出结论.不妨假设n边形的分割方案有Pn种.

探究一用四边形的对角线把四边形分割成2个三角形,共有多少种不同的分割方案?

如图,图,显然,只有2种不同的分割方案.所以,P4=2.

探究二:用五边形的对角线把五边形分割成3个三角形,共有多少种不同的分割方案?

不妨把分割方案分成三类:

1类:如图③,用A,EB连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.

2类:如图④,用A,EC连接,把五边形分割成3个三角形,有1种不同的分割方案,可视为种分割方案.

3图⑤,用A,ED连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.

所以,P5 =++=()

探究三:用六边形的对角线把六边形分割成4个三角形,共有多少种不同的分割方案?

不妨把分割方案分成四类:

1类:如图⑥,用A,FB连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种不同的分割方案.

2类:如图⑦,用A,FC连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案

3类:如图⑧,用A,FD连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案.

4类:如图⑨,用A,FE连接,先把六边形分割转化成1个三角形和1个五边形.再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种分割方案.

所以,P6 =()

探究四:用七边形的对角线把七边形分割成5个三角形,则P7P6的关系为:

P7 = ,共有_____种不同的分割方案.……

(结论)用n边形的对角线把n边形分割成(n-2)个三角形,共有多少种不同的分割方案(n≥4)?(直接写出PnPn -1的关系式,不写解答过程).

(应用)用八边形的对角线把八边形分割成6个三角形,共有多少种不同的分割方案? (应用上述结论,写出解答过程)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:

(1)在刚出发时,我公安快艇距走私船多少海里?

(2)计算走私船与公安艇的速度分别是多少?

(3)求出l1,l2的解析式.

(4)问6分钟时,走私船与我公安快艇相距多少海里?

查看答案和解析>>

同步练习册答案