相关习题
 0  350545  350553  350559  350563  350569  350571  350575  350581  350583  350589  350595  350599  350601  350605  350611  350613  350619  350623  350625  350629  350631  350635  350637  350639  350640  350641  350643  350644  350645  350647  350649  350653  350655  350659  350661  350665  350671  350673  350679  350683  350685  350689  350695  350701  350703  350709  350713  350715  350721  350725  350731  350739  366461 

科目: 来源: 题型:

【题目】如图,在四边形ABCD中,E、F分别是CD、AB延长线上的点,连结EF,分别交AD、BC于点G、H.若∠1=∠2,∠A=∠C试说明AD//BCAB//CD.请完成下面的推理过程,填写理由或数学式:

∵∠1=2,1=AGH(_________)

∴∠2=AGH(________)

AD//BC(________)

∴∠ADE=C(________)

∵∠A=C(已知

∴∠ADE=_______(等量代换)

AB//CD(_______)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为(
A.6cm
B.4cm
C.3cm
D.8cm

查看答案和解析>>

科目: 来源: 题型:

【题目】定义:有两条边长的比值为 的直角三角形叫“潜力三角形”.如图,在△ABC中,∠B=90°,D是AB的中点,E是CD的中点,DF∥AE交BC于点F.

(1)设“潜力三角形”较短直角边长为a,斜边长为c,请你直接写出 的值为
(2)若∠AED=∠DCB,求证:△BDF是“潜力三角形”;
(3)若△BDF是“潜力三角形”,且BF=1,求线段AC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ACBECD都是等腰直角三角形,∠ACB=ECD=90°,点DAB边上一点.

(1)求证:AD2+DB2=ED2

(2)若BC=,求四边形ADCE的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中∠C=90°,A=30°,BC=2,点P,Q,R分别是AB,AC,BC上的动点,PQ+PR+QR的最小值是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知y=﹣x+m(m>4)过动点A(m,0),并与反比例函数y= 的图象交于B、C两点(点B在点C的左边),以OA为直径作反比例函数y= 的图象相交的半圆,圆心为P,过点B作x轴的垂线,垂足为E,并于半圆P交于点D.
(1)当m=5时,求B、C两点的坐标.
(2)求证:无论m取何值,线段DE的长始终为定值.
(3)记点C关于直线DE的对称点为C′,当四边形CDC′E为菱形时,求m的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方形ABCD中,对角线AD,BC交于点O,点E、F分别在AC,CD边上,EF∥AD,交BC于点P,若点O是△BEF的重心.

(1)求tan∠ABE的值.
(2)求 的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在锐角三角形ABC中,BD⊥AC于D,CE⊥AB于E,且SADE= S四边形BEDC , 则∠A=(
A.75°
B.60°
C.45°
D.30°

查看答案和解析>>

科目: 来源: 题型:

【题目】二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y= 的大致图象是(
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线y= x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.

(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究 是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案